Upload gradio demo
Browse files- .gitattributes +1 -0
- README.md +23 -0
- assert/gradio_demo.JPG +3 -0
- assert/gradio_face.JPG +0 -0
- python/gradio_demo.py +203 -0
- python/utils/__pycache__/face_detector.cpython-313.pyc +0 -0
- python/utils/__pycache__/general.cpython-313.pyc +0 -0
- python/utils/__pycache__/restoration_helper.cpython-313.pyc +0 -0
.gitattributes
CHANGED
|
@@ -44,3 +44,4 @@ images/face/00_00.png filter=lfs diff=lfs merge=lfs -text
|
|
| 44 |
images/image/02.png filter=lfs diff=lfs merge=lfs -text
|
| 45 |
images/result_0.png filter=lfs diff=lfs merge=lfs -text
|
| 46 |
images/result_1.png filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 44 |
images/image/02.png filter=lfs diff=lfs merge=lfs -text
|
| 45 |
images/result_0.png filter=lfs diff=lfs merge=lfs -text
|
| 46 |
images/result_1.png filter=lfs diff=lfs merge=lfs -text
|
| 47 |
+
assert/gradio_demo.JPG filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -63,7 +63,30 @@ Input Data:
|
|
| 63 |
| `-- 02.png
|
| 64 |
|
| 65 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
|
|
|
|
|
|
| 67 |
|
| 68 |
#### Inference with AX650 Host, such as M4N-Dock(爱芯派Pro)
|
| 69 |
|
|
|
|
| 63 |
| `-- 02.png
|
| 64 |
|
| 65 |
```
|
| 66 |
+
#### Inference with M.2 Accelerator card
|
| 67 |
+
```
|
| 68 |
+
$cd python
|
| 69 |
+
$python3 gradio_demo.py
|
| 70 |
+
[INFO] Available providers: ['AXCLRTExecutionProvider']
|
| 71 |
+
[INFO] Using provider: AXCLRTExecutionProvider
|
| 72 |
+
[INFO] SOC Name: AX650N
|
| 73 |
+
[INFO] VNPU type: VNPUType.DISABLED
|
| 74 |
+
[INFO] Compiler version: 5.0-patch1 6d9cc640
|
| 75 |
+
[INFO] Using provider: AXCLRTExecutionProvider
|
| 76 |
+
[INFO] SOC Name: AX650N
|
| 77 |
+
[INFO] VNPU type: VNPUType.DISABLED
|
| 78 |
+
[INFO] Compiler version: 5.0-patch1 681a0b38
|
| 79 |
+
[INFO] Using provider: AXCLRTExecutionProvider
|
| 80 |
+
[INFO] SOC Name: AX650N
|
| 81 |
+
[INFO] VNPU type: VNPUType.DISABLED
|
| 82 |
+
[INFO] Compiler version: 4.2-dirty 5e72cf06-dirty
|
| 83 |
+
* Running on local URL: http://0.0.0.0:7860
|
| 84 |
+
* To create a public link, set `share=True` in `launch()`.
|
| 85 |
+
```
|
| 86 |
+
Then use the M.2 Accelerator card IP instead of the 0.0.0.0, and use chrome open the URL: http://[your ip]:7860
|
| 87 |
|
| 88 |
+

|
| 89 |
+

|
| 90 |
|
| 91 |
#### Inference with AX650 Host, such as M4N-Dock(爱芯派Pro)
|
| 92 |
|
assert/gradio_demo.JPG
ADDED
|
|
Git LFS Details
|
assert/gradio_face.JPG
ADDED
|
|
python/gradio_demo.py
ADDED
|
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
+
import tempfile
|
| 4 |
+
import numpy as np
|
| 5 |
+
import axengine as axe
|
| 6 |
+
import cv2
|
| 7 |
+
from utils.restoration_helper import RestoreHelper
|
| 8 |
+
|
| 9 |
+
restore_helper = RestoreHelper(
|
| 10 |
+
upscale_factor=1,
|
| 11 |
+
face_size=512,
|
| 12 |
+
crop_ratio=(1, 1),
|
| 13 |
+
det_model="../model/yolov5l-face.axmodel",
|
| 14 |
+
res_model="../model/codeformer.axmodel",
|
| 15 |
+
bg_model="../model/realesrgan-x2.axmodel",
|
| 16 |
+
save_ext='png',
|
| 17 |
+
use_parse=True
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
def face(img_path, session):
|
| 21 |
+
|
| 22 |
+
output_names = [x.name for x in session.get_outputs()]
|
| 23 |
+
input_name = session.get_inputs()[0].name
|
| 24 |
+
|
| 25 |
+
ori_image = cv2.imread(img_path)
|
| 26 |
+
h, w = ori_image.shape[:2]
|
| 27 |
+
image = cv2.resize(ori_image, (512, 512))
|
| 28 |
+
image = (image[..., ::-1] /255.0).astype(np.float32)
|
| 29 |
+
|
| 30 |
+
mean = [0.5, 0.5, 0.5]
|
| 31 |
+
std = [0.5, 0.5, 0.5]
|
| 32 |
+
image = ((image - mean) / std).astype(np.float32)
|
| 33 |
+
|
| 34 |
+
#image = (image /1.0).astype(np.float32)
|
| 35 |
+
img = np.transpose(np.expand_dims(np.ascontiguousarray(image), axis=0), (0,3,1,2))
|
| 36 |
+
|
| 37 |
+
# Use the model to generate super-resolved images
|
| 38 |
+
sr = session.run(output_names, {input_name: img})
|
| 39 |
+
|
| 40 |
+
#sr_y_image = imgproc.array_to_image(sr)
|
| 41 |
+
sr = np.transpose(sr[0].squeeze(0), (1,2,0))
|
| 42 |
+
sr = (sr*std + mean).astype(np.float32)
|
| 43 |
+
|
| 44 |
+
# Save image
|
| 45 |
+
ndarr = np.clip((sr*255.0), 0, 255.0).astype(np.uint8)
|
| 46 |
+
out_image = cv2.resize(ndarr[..., ::-1], (w, h))
|
| 47 |
+
|
| 48 |
+
return out_image
|
| 49 |
+
|
| 50 |
+
def full_image(img_path, restore_helper=restore_helper):
|
| 51 |
+
|
| 52 |
+
restore_helper.clean_all()
|
| 53 |
+
img = cv2.imread(img_path, cv2.IMREAD_COLOR)
|
| 54 |
+
|
| 55 |
+
restore_helper.read_image(img)
|
| 56 |
+
# get face landmarks for each face
|
| 57 |
+
num_det_faces = restore_helper.get_face_landmarks_5(
|
| 58 |
+
only_center_face=False, resize=640, eye_dist_threshold=5)
|
| 59 |
+
# align and warp each face
|
| 60 |
+
restore_helper.align_warp_face()
|
| 61 |
+
# face restoration for each cropped face
|
| 62 |
+
for idx, cropped_face in enumerate(restore_helper.cropped_faces):
|
| 63 |
+
# prepare data
|
| 64 |
+
cropped_face_t = (cropped_face.astype(np.float32) / 255.0) * 2.0 - 1.0
|
| 65 |
+
cropped_face_t = np.transpose(
|
| 66 |
+
np.expand_dims(np.ascontiguousarray(cropped_face_t[...,::-1]), axis=0),
|
| 67 |
+
(0,3,1,2)
|
| 68 |
+
)
|
| 69 |
+
#print('cropped_face_t', cropped_face_t.shape)
|
| 70 |
+
|
| 71 |
+
try:
|
| 72 |
+
ort_outs = restore_helper.rs_sessison.run(
|
| 73 |
+
restore_helper.rs_output,
|
| 74 |
+
{restore_helper.rs_input: cropped_face_t}
|
| 75 |
+
)
|
| 76 |
+
restored_face = ort_outs[0]
|
| 77 |
+
restored_face = (restored_face.squeeze().transpose(1, 2, 0) * 0.5 + 0.5) * 255
|
| 78 |
+
restored_face = np.clip(restored_face[...,::-1], 0, 255).astype(np.uint8)
|
| 79 |
+
except Exception as error:
|
| 80 |
+
print(f'\tFailed inference for CodeFormer: {error}')
|
| 81 |
+
restored_face = (cropped_face_t.squeeze().transpose(1, 2, 0) * 0.5 + 0.5) * 255
|
| 82 |
+
restored_face = np.clip(restored_face, 0, 255).astype(np.uint8)
|
| 83 |
+
|
| 84 |
+
restored_face = restored_face.astype('uint8')
|
| 85 |
+
restore_helper.add_restored_face(restored_face, cropped_face)
|
| 86 |
+
|
| 87 |
+
# upsample the background
|
| 88 |
+
# Now only support RealESRGAN for upsampling background
|
| 89 |
+
bg_img = restore_helper.background_upsampling(img)
|
| 90 |
+
restore_helper.get_inverse_affine(None)
|
| 91 |
+
# paste each restored face to the input image
|
| 92 |
+
restored_img = restore_helper.paste_faces_to_input_image(upsample_img=bg_img, draw_box=False)
|
| 93 |
+
|
| 94 |
+
return restored_img
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
def colorize_image(input_img_path: str, model_name: str, progress=gr.Progress()):
|
| 98 |
+
if not input_img_path:
|
| 99 |
+
raise gr.Error("未上传图片")
|
| 100 |
+
|
| 101 |
+
# 加载图像
|
| 102 |
+
progress(0.3, desc="加载图像...")
|
| 103 |
+
|
| 104 |
+
# 根据模型选择调用不同函数
|
| 105 |
+
if model_name == "Face":
|
| 106 |
+
out = face(input_img_path, session=restore_helper.rs_sessison)
|
| 107 |
+
else:
|
| 108 |
+
out = full_image(input_img_path, restore_helper=restore_helper)
|
| 109 |
+
|
| 110 |
+
progress(0.9, desc="保存结果...")
|
| 111 |
+
|
| 112 |
+
# 保存到临时文件
|
| 113 |
+
output_path = os.path.join(tempfile.gettempdir(), "restore_output.jpg")
|
| 114 |
+
cv2.imwrite(output_path, out)
|
| 115 |
+
|
| 116 |
+
progress(1.0, desc="完成!")
|
| 117 |
+
return output_path
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
# ==============================
|
| 121 |
+
# Gradio 界面
|
| 122 |
+
# ==============================
|
| 123 |
+
custom_css = """
|
| 124 |
+
body, .gradio-container {
|
| 125 |
+
font-family: 'Microsoft YaHei', 'PingFang SC', 'Helvetica Neue', Arial, sans-serif;
|
| 126 |
+
}
|
| 127 |
+
.model-buttons .wrap {
|
| 128 |
+
display: flex;
|
| 129 |
+
gap: 10px;
|
| 130 |
+
}
|
| 131 |
+
.model-buttons .wrap label {
|
| 132 |
+
background-color: #f0f0f0;
|
| 133 |
+
padding: 10px 20px;
|
| 134 |
+
border-radius: 8px;
|
| 135 |
+
cursor: pointer;
|
| 136 |
+
text-align: center;
|
| 137 |
+
font-weight: 600;
|
| 138 |
+
border: 2px solid transparent;
|
| 139 |
+
flex: 1;
|
| 140 |
+
}
|
| 141 |
+
.model-buttons .wrap label:hover {
|
| 142 |
+
background-color: #e0e0e0;
|
| 143 |
+
}
|
| 144 |
+
.model-buttons .wrap input[type="radio"]:checked + label {
|
| 145 |
+
background-color: #4CAF50;
|
| 146 |
+
color: white;
|
| 147 |
+
border-color: #45a049;
|
| 148 |
+
}
|
| 149 |
+
"""
|
| 150 |
+
|
| 151 |
+
with gr.Blocks(title="人脸修复工具") as demo:
|
| 152 |
+
gr.Markdown("## 🎨 人脸修复演示DEMO")
|
| 153 |
+
|
| 154 |
+
with gr.Row(equal_height=True):
|
| 155 |
+
# 左侧:输入区
|
| 156 |
+
with gr.Column(scale=1, min_width=300):
|
| 157 |
+
gr.Markdown("### 📤 输入")
|
| 158 |
+
input_image = gr.Image(
|
| 159 |
+
type="filepath",
|
| 160 |
+
label="上传图片",
|
| 161 |
+
sources=["upload"],
|
| 162 |
+
height=300
|
| 163 |
+
)
|
| 164 |
+
|
| 165 |
+
gr.Markdown("### 🔧 选择修复模式")
|
| 166 |
+
model_choice = gr.Radio(
|
| 167 |
+
choices=["Face", "Full image"],
|
| 168 |
+
value="Face",
|
| 169 |
+
label=None,
|
| 170 |
+
elem_classes="model-buttons"
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
run_btn = gr.Button("🚀 开始修复", variant="primary")
|
| 174 |
+
|
| 175 |
+
# 右侧:输出区
|
| 176 |
+
with gr.Column(scale=1, min_width=600):
|
| 177 |
+
gr.Markdown("### 🖼️ 修复结果")
|
| 178 |
+
output_image = gr.Image(
|
| 179 |
+
label="修复后图片",
|
| 180 |
+
interactive=False,
|
| 181 |
+
height=600
|
| 182 |
+
)
|
| 183 |
+
download_btn = gr.File(label="📥 下载修复图片")
|
| 184 |
+
|
| 185 |
+
# 绑定事件
|
| 186 |
+
def on_colorize(img_path, model, progress=gr.Progress()):
|
| 187 |
+
if img_path is None:
|
| 188 |
+
raise gr.Error("请先上传图片!")
|
| 189 |
+
try:
|
| 190 |
+
result_path = colorize_image(img_path, model, progress=progress)
|
| 191 |
+
return result_path, result_path
|
| 192 |
+
except Exception as e:
|
| 193 |
+
raise gr.Error(f"处理失败: {str(e)}")
|
| 194 |
+
|
| 195 |
+
run_btn.click(
|
| 196 |
+
fn=on_colorize,
|
| 197 |
+
inputs=[input_image, model_choice],
|
| 198 |
+
outputs=[output_image, download_btn]
|
| 199 |
+
)
|
| 200 |
+
|
| 201 |
+
# 启动
|
| 202 |
+
if __name__ == "__main__":
|
| 203 |
+
demo.launch(server_name="0.0.0.0", server_port=7860, theme=gr.themes.Soft(), css=custom_css)
|
python/utils/__pycache__/face_detector.cpython-313.pyc
ADDED
|
Binary file (8.11 kB). View file
|
|
|
python/utils/__pycache__/general.cpython-313.pyc
ADDED
|
Binary file (19.2 kB). View file
|
|
|
python/utils/__pycache__/restoration_helper.cpython-313.pyc
ADDED
|
Binary file (27.9 kB). View file
|
|
|