Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: stable-baselines3
|
| 3 |
+
tags:
|
| 4 |
+
- LunarLander-v2
|
| 5 |
+
- deep-reinforcement-learning
|
| 6 |
+
- reinforcement-learning
|
| 7 |
+
- stable-baselines3
|
| 8 |
+
model-index:
|
| 9 |
+
- name: PPO
|
| 10 |
+
results:
|
| 11 |
+
- task:
|
| 12 |
+
type: reinforcement-learning
|
| 13 |
+
name: reinforcement-learning
|
| 14 |
+
dataset:
|
| 15 |
+
name: LunarLander-v2
|
| 16 |
+
type: LunarLander-v2
|
| 17 |
+
metrics:
|
| 18 |
+
- type: mean_reward
|
| 19 |
+
value: 266.87 +/- 21.03
|
| 20 |
+
name: mean_reward
|
| 21 |
+
verified: false
|
| 22 |
+
---
|
| 23 |
+
|
| 24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
| 25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
| 26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
| 27 |
+
|
| 28 |
+
## Usage (with Stable-baselines3)
|
| 29 |
+
TODO: Add your code
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
```python
|
| 33 |
+
from stable_baselines3 import ...
|
| 34 |
+
from huggingface_sb3 import load_from_hub
|
| 35 |
+
|
| 36 |
+
...
|
| 37 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79fe51b41800>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79fe51b418a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79fe51b41940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79fe51b419e0>", "_build": "<function ActorCriticPolicy._build at 0x79fe51b41a80>", "forward": "<function ActorCriticPolicy.forward at 0x79fe51b41b20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79fe51b41bc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79fe51b41c60>", "_predict": "<function ActorCriticPolicy._predict at 0x79fe51b41d00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79fe51b41da0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79fe51b41e40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79fe51b41ee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79fe51ccec80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1769666535079700022, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdgIAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAAIAAAAAAACNg0q+h0IjP/U9cT7EM5m++VcjuxvVTTwAAAAAAAAAAGamlTrDJhi8Wy63OaULuzoLAYg9ZliduwAAgD8AAIA/JinkPd8pKz6i54K+FneCvsKG+73GZo47AAAAAAAAAAAA0H29EUb9PeIXbD2CpVm+Qmkrvd5WhjwAAAAAAAAAAGaatDw80k89agv+PUkq5b0K84A9WEtFPAAAAAAAAAAAZpAzvAUi67uZ+ow9rgBVvdU2Fb0Wa3K+AACAPwAAgD8mvsY97LyEP8bh8j38f9S+ahiqPRWMGT0AAAAAAAAAAE1aKj1IxZU9gz1DvmSsAL4FOB69cCNTPQAAAAAAAAAAzT2gPIHtsj0qs0y9VUNpvkdRhbuLE1U9AAAAAAAAAABmTJm90sOUPpA85D1UY1O+KbMGPbnVPD0AAAAAAAAAALOxhj3WzAc/AHrlvEVpjb4vXXY9UHLcvQAAAAAAAAAAmuqlPbu6YD+VFmA9YIH1vss0LD6YOoC9AAAAAAAAAADNaH09CjOvP2X9nT4KmK2+Bx9XPciF5T0AAAAAAAAAAM3wJTzzo5U+oCHtuoxFJb6d9E87LoutPAAAAAAAAAAATWaEPVL4qTiu+N0zh+i4L4cawTvFr8KzAACAPwAAgD+QSIm+4J18P/qBRL3CH6q+6ZRSvn7cPT0AAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsIhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVhAAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHoGuDBdleMAWyUTSQBjAF0lEdAkZU+V1Oj7HV9lChoBkdAcRMbGFSKnGgHTQ0BaAhHQJGWcB6rvLJ1fZQoaAZHQHLDyfYjB2xoB00FAWgIR0CRlumGdqcmdX2UKGgGR0Byzjk+5e7daAdNHQFoCEdAkZdKKP4mC3V9lChoBkdAcVxfEXLvC2gHTRcBaAhHQJGXaz7di2F1fZQoaAZHQHHIWIO6NERoB007AWgIR0CRmPxYaHbidX2UKGgGR0BwI6Yc/+sHaAdNJgFoCEdAkZlJNj9XLnV9lChoBkdAZfA1ZTyau2gHTegDaAhHQJGaF+c6Nl11fZQoaAZHQHKQ7lV94NZoB00tAWgIR0CRmj9LYf4idX2UKGgGR0BxevRu0kWzaAdNMwFoCEdAkZtVuBMBZXV9lChoBkdAbtZNbC79RGgHTQ8BaAhHQJGcEQqZtvZ1fZQoaAZHQHOHe76Hj6xoB00lAWgIR0CRnHgiu+yrdX2UKGgGR0BtoqWom5UcaAdNFQFoCEdAkZ3LvPTodXV9lChoBkdAcf5I2OyVwGgHTRMBaAhHQJGd1TxXnyN1fZQoaAZHQG/oMfigkC5oB00yAWgIR0CRni7sOXmedX2UKGgGR0ByMT6LwWnCaAdNMgFoCEdAkZ5lII4VAXV9lChoBkdAb4++AVfu1GgHTR4BaAhHQJGerhqCYkV1fZQoaAZHQHDcK9CeEqVoB00LAWgIR0CRn2B+nZTRdX2UKGgGR0Bw+HnnuAqeaAdNJgFoCEdAkZ+9WdVebHV9lChoBkdAcV3PFvQ4TGgHTSsBaAhHQJGgkfnwG4Z1fZQoaAZHQG8KQj2SMcZoB00OAWgIR0CRoP1k1/DtdX2UKGgGR0ByrJ+Zw4sFaAdNQQFoCEdAkaFEvPC2t3V9lChoBkdAcEZAVO9FnmgHTRoBaAhHQJGhh2aDwph1fZQoaAZHQHDFu40/GERoB00QAWgIR0CRocqjafz0dX2UKGgGR0BvJXdoFmnPaAdNEwFoCEdAkaH4bsF+u3V9lChoBkdAcjGxwQ176mgHTRoBaAhHQJGi2CsfaHt1fZQoaAZHQG8UcTzundhoB00RAWgIR0CRo0++M6zWdX2UKGgGR0BsaII8hcJMaAdNBwFoCEdAkaNkvTPSlXV9lChoBkdActEit7rs0GgHS/loCEdAkaT9XtBv73V9lChoBkdAcqtzV+Zw42gHTR0BaAhHQJGlb9l2/zt1fZQoaAZHQHM1mSQo1DVoB00gAWgIR0CRpX1zQu27dX2UKGgGR0BzWqYu01IiaAdNAgFoCEdAkaWX6Q/5cnV9lChoBkdAbt24d6sySGgHTSYBaAhHQJGl/o6jnFJ1fZQoaAZHQHCYk5dWyTpoB0v4aAhHQJGmY4Nqgyx1fZQoaAZHQHNnGKMvRJFoB00MAWgIR0CRpohMajvedX2UKGgGR0BtYn9YOlO5aAdNBwFoCEdAkaflstTUAnV9lChoBkdAb2ygElme2GgHTSkBaAhHQJGobjFQ2uR1fZQoaAZHQHMWQZwXIltoB00LAWgIR0CRqPI5HVgAdX2UKGgGR0BuU4bdadMCaAdNBQFoCEdAkaj8KkVN6HV9lChoBkdAcXHweeWfLGgHTSABaAhHQJGpN1klNUR1fZQoaAZHQHKUmIXTEzhoB00vAWgIR0CRqVj4YaYNdX2UKGgGR0ByfCSwGGEgaAdNBQFoCEdAkapo4hllLHV9lChoBkdAcFh6vq1PWWgHTSUBaAhHQJGq09QoCuF1fZQoaAZHQG8Uw40dilVoB00nAWgIR0CRq3gPEsJ6dX2UKGgGR0BuMuCEpRXPaAdL/WgIR0CRq93irDIjdX2UKGgGR0BwWOkAPuohaAdNHAFoCEdAkb7AlfJFLHV9lChoBkdAbRRZX+2mYWgHTRwBaAhHQJG+320zCUJ1fZQoaAZHQHCQ54nndO9oB00SAWgIR0CRvwsiSq2jdX2UKGgGR0BujTC53C9AaAdNJwFoCEdAkb8JKFqSHXV9lChoBkdAbm3bGm1pkGgHTRoBaAhHQJG/1HkLhJl1fZQoaAZHQHDQmMbWEsdoB00jAWgIR0CRv+jy4FzNdX2UKGgGR0ByDMojOcDsaAdNEgFoCEdAkcD5IYm9hHV9lChoBkdAcd7ojOcDsGgHTQQBaAhHQJHCFf4REnd1fZQoaAZHQG3132/SH/NoB00NAWgIR0CRwjdS2phndX2UKGgGR0BsOdcjZ+QVaAdNJwFoCEdAkcK0DhcZ+HV9lChoBkdAckUuX/o7m2gHS/1oCEdAkcSSM98qnXV9lChoBkdAcaY9t/FzdWgHTXUBaAhHQJHFDHmzSkV1fZQoaAZHQHJmVgYxcmloB01lAWgIR0CRxRQkHD77dX2UKGgGR0Btmphx5s0paAdNPgFoCEdAkcXCtFKChHV9lChoBkdAcopnEVFhHGgHTT4BaAhHQJHGXIYFaB91fZQoaAZHQG3xsJY1YQtoB00eAWgIR0CRxoWhAWzodX2UKGgGR0Bypihdt2s8aAdL+2gIR0CRx1l/pdKNdX2UKGgGR0Bv5S5PM0P6aAdNEAFoCEdAkcfzxgAp8XV9lChoBkdAbnASJ0nw5WgHTRgBaAhHQJHIHJq7Acl1fZQoaAZHQHE7EjHGS6loB00HAWgIR0CRyQ6fra/RdX2UKGgGR0BwQ2rtE5QxaAdNFgFoCEdAkctnlXA/LXV9lChoBkdAcs9HVwxWUGgHTQABaAhHQJHMELF4s3B1fZQoaAZHQHAPiVB2OhloB018AWgIR0CRzE0RODaodX2UKGgGR0BxrsV1wHZ9aAdNYQFoCEdAkcxl3+uNgnV9lChoBkdAckEiKBNEgGgHTTQBaAhHQJHNZo24usd1fZQoaAZHQG6oHBk7OmloB00NAWgIR0CRzl/8VHnVdX2UKGgGR0Bv9x86V+qjaAdNXgFoCEdAkc9yYLLIP3V9lChoBkdAcGXR6F/QSmgHTRIBaAhHQJHPflhgE2Z1fZQoaAZHQHC1G/FirktoB00lAWgIR0CRz5AZKnNxdX2UKGgGR0Bv5x2nsLOSaAdNFQFoCEdAkdAj+vQnhXV9lChoBkdAcAju0TlDGGgHTQQBaAhHQJHQS6MBIWh1fZQoaAZHQHGqns1KoQ5oB00PAWgIR0CR0SUONHYpdX2UKGgGR0BvmdgH/tIDaAdNSAFoCEdAkdF33YcvNHV9lChoBkdAcfbiQkona2gHTQcBaAhHQJHRppRGc4J1fZQoaAZHQHCTaBI4EOloB01vAWgIR0CR0a7eVLSNdX2UKGgGR0BxelGOMl1KaAdNBAFoCEdAkdMXVwxWUHV9lChoBkdAcAWvFm4Aj2gHTWIBaAhHQJHTSYIBzWB1fZQoaAZHQG9A/NZ/0/ZoB00KAWgIR0CR0/5EMLF5dX2UKGgGR0BuRQ5ggHNYaAdNGgFoCEdAkdQ1PnB+F3V9lChoBkdAchu7fYSQHWgHTUABaAhHQJHVnnJT2nN1fZQoaAZHQG/YMIeHSF5oB01SAWgIR0CR11v+OwPidX2UKGgGR0Bwtcckt29taAdNAAFoCEdAkdd+A3DNyHV9lChoBkdAcyvQDFId2mgHTRgBaAhHQJHXhWyTpxF1fZQoaAZHQHJu5J04iotoB0v+aAhHQJHXl76YVqN1fZQoaAZHQHJMOQyRB/toB007AWgIR0CR154IKMNudX2UKGgGR0BydC/Ho5ggaAdNMwFoCEdAkdhHfZVXFXV9lChoBkdAcciPkJa7mWgHTRoBaAhHQJHZK0mdAgR1fZQoaAZHQHDra/qPfbdoB01fAWgIR0CR2ZGEPDpDdX2UKGgGR0Bsex7JGOMmaAdNHQFoCEdAkdnCdz4k/3V9lChoBkdAcB32DQJHAmgHTS0BaAhHQJHaNvkzXSV1fZQoaAZHQG/wHEdeY2NoB01TAWgIR0CR2xCiRGMGdX2UKGgGR0BwPJhMJx//aAdNKAFoCEdAkduHktEofHV9lChoBkdAbbUq4H5aeWgHTRYBaAhHQJHcJg8bJfZ1fZQoaAZHQHBnhiLEUCdoB00kAWgIR0CR3FACnxaxdX2UKGgGR0Bw1HOgQHzIaAdNWQFoCEdAkd0CdJ8OTnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV3AAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEyL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTIvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEyL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTIvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.6.105+-x86_64-with-glibc2.35 # 1 SMP Thu Oct 2 10:42:05 UTC 2025", "Python": "3.12.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.9.0+cu126", "GPU Enabled": "True", "Numpy": "2.0.2", "Cloudpickle": "3.1.2", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e8dbe3b92f8f1b103cbe33ae130d626b1e42806eb7f933487f0fa276d5a6ca69
|
| 3 |
+
size 149175
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
|
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"policy_class": {
|
| 3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
| 4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
| 5 |
+
"__module__": "stable_baselines3.common.policies",
|
| 6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
| 7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x79fe51b41800>",
|
| 8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79fe51b418a0>",
|
| 9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79fe51b41940>",
|
| 10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79fe51b419e0>",
|
| 11 |
+
"_build": "<function ActorCriticPolicy._build at 0x79fe51b41a80>",
|
| 12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x79fe51b41b20>",
|
| 13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x79fe51b41bc0>",
|
| 14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79fe51b41c60>",
|
| 15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x79fe51b41d00>",
|
| 16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79fe51b41da0>",
|
| 17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79fe51b41e40>",
|
| 18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x79fe51b41ee0>",
|
| 19 |
+
"__abstractmethods__": "frozenset()",
|
| 20 |
+
"_abc_impl": "<_abc._abc_data object at 0x79fe51ccec80>"
|
| 21 |
+
},
|
| 22 |
+
"verbose": 1,
|
| 23 |
+
"policy_kwargs": {},
|
| 24 |
+
"num_timesteps": 1015808,
|
| 25 |
+
"_total_timesteps": 1000000,
|
| 26 |
+
"_num_timesteps_at_start": 0,
|
| 27 |
+
"seed": null,
|
| 28 |
+
"action_noise": null,
|
| 29 |
+
"start_time": 1769666535079700022,
|
| 30 |
+
"learning_rate": 0.0003,
|
| 31 |
+
"tensorboard_log": null,
|
| 32 |
+
"_last_obs": {
|
| 33 |
+
":type:": "<class 'numpy.ndarray'>",
|
| 34 |
+
":serialized:": "gAWVdgIAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAAIAAAAAAACNg0q+h0IjP/U9cT7EM5m++VcjuxvVTTwAAAAAAAAAAGamlTrDJhi8Wy63OaULuzoLAYg9ZliduwAAgD8AAIA/JinkPd8pKz6i54K+FneCvsKG+73GZo47AAAAAAAAAAAA0H29EUb9PeIXbD2CpVm+Qmkrvd5WhjwAAAAAAAAAAGaatDw80k89agv+PUkq5b0K84A9WEtFPAAAAAAAAAAAZpAzvAUi67uZ+ow9rgBVvdU2Fb0Wa3K+AACAPwAAgD8mvsY97LyEP8bh8j38f9S+ahiqPRWMGT0AAAAAAAAAAE1aKj1IxZU9gz1DvmSsAL4FOB69cCNTPQAAAAAAAAAAzT2gPIHtsj0qs0y9VUNpvkdRhbuLE1U9AAAAAAAAAABmTJm90sOUPpA85D1UY1O+KbMGPbnVPD0AAAAAAAAAALOxhj3WzAc/AHrlvEVpjb4vXXY9UHLcvQAAAAAAAAAAmuqlPbu6YD+VFmA9YIH1vss0LD6YOoC9AAAAAAAAAADNaH09CjOvP2X9nT4KmK2+Bx9XPciF5T0AAAAAAAAAAM3wJTzzo5U+oCHtuoxFJb6d9E87LoutPAAAAAAAAAAATWaEPVL4qTiu+N0zh+i4L4cawTvFr8KzAACAPwAAgD+QSIm+4J18P/qBRL3CH6q+6ZRSvn7cPT0AAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsIhpSMAUOUdJRSlC4="
|
| 35 |
+
},
|
| 36 |
+
"_last_episode_starts": {
|
| 37 |
+
":type:": "<class 'numpy.ndarray'>",
|
| 38 |
+
":serialized:": "gAWVhAAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="
|
| 39 |
+
},
|
| 40 |
+
"_last_original_obs": null,
|
| 41 |
+
"_episode_num": 0,
|
| 42 |
+
"use_sde": false,
|
| 43 |
+
"sde_sample_freq": -1,
|
| 44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
| 45 |
+
"_stats_window_size": 100,
|
| 46 |
+
"ep_info_buffer": {
|
| 47 |
+
":type:": "<class 'collections.deque'>",
|
| 48 |
+
":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHoGuDBdleMAWyUTSQBjAF0lEdAkZU+V1Oj7HV9lChoBkdAcRMbGFSKnGgHTQ0BaAhHQJGWcB6rvLJ1fZQoaAZHQHLDyfYjB2xoB00FAWgIR0CRlumGdqcmdX2UKGgGR0Byzjk+5e7daAdNHQFoCEdAkZdKKP4mC3V9lChoBkdAcVxfEXLvC2gHTRcBaAhHQJGXaz7di2F1fZQoaAZHQHHIWIO6NERoB007AWgIR0CRmPxYaHbidX2UKGgGR0BwI6Yc/+sHaAdNJgFoCEdAkZlJNj9XLnV9lChoBkdAZfA1ZTyau2gHTegDaAhHQJGaF+c6Nl11fZQoaAZHQHKQ7lV94NZoB00tAWgIR0CRmj9LYf4idX2UKGgGR0BxevRu0kWzaAdNMwFoCEdAkZtVuBMBZXV9lChoBkdAbtZNbC79RGgHTQ8BaAhHQJGcEQqZtvZ1fZQoaAZHQHOHe76Hj6xoB00lAWgIR0CRnHgiu+yrdX2UKGgGR0BtoqWom5UcaAdNFQFoCEdAkZ3LvPTodXV9lChoBkdAcf5I2OyVwGgHTRMBaAhHQJGd1TxXnyN1fZQoaAZHQG/oMfigkC5oB00yAWgIR0CRni7sOXmedX2UKGgGR0ByMT6LwWnCaAdNMgFoCEdAkZ5lII4VAXV9lChoBkdAb4++AVfu1GgHTR4BaAhHQJGerhqCYkV1fZQoaAZHQHDcK9CeEqVoB00LAWgIR0CRn2B+nZTRdX2UKGgGR0Bw+HnnuAqeaAdNJgFoCEdAkZ+9WdVebHV9lChoBkdAcV3PFvQ4TGgHTSsBaAhHQJGgkfnwG4Z1fZQoaAZHQG8KQj2SMcZoB00OAWgIR0CRoP1k1/DtdX2UKGgGR0ByrJ+Zw4sFaAdNQQFoCEdAkaFEvPC2t3V9lChoBkdAcEZAVO9FnmgHTRoBaAhHQJGhh2aDwph1fZQoaAZHQHDFu40/GERoB00QAWgIR0CRocqjafz0dX2UKGgGR0BvJXdoFmnPaAdNEwFoCEdAkaH4bsF+u3V9lChoBkdAcjGxwQ176mgHTRoBaAhHQJGi2CsfaHt1fZQoaAZHQG8UcTzundhoB00RAWgIR0CRo0++M6zWdX2UKGgGR0BsaII8hcJMaAdNBwFoCEdAkaNkvTPSlXV9lChoBkdActEit7rs0GgHS/loCEdAkaT9XtBv73V9lChoBkdAcqtzV+Zw42gHTR0BaAhHQJGlb9l2/zt1fZQoaAZHQHM1mSQo1DVoB00gAWgIR0CRpX1zQu27dX2UKGgGR0BzWqYu01IiaAdNAgFoCEdAkaWX6Q/5cnV9lChoBkdAbt24d6sySGgHTSYBaAhHQJGl/o6jnFJ1fZQoaAZHQHCYk5dWyTpoB0v4aAhHQJGmY4Nqgyx1fZQoaAZHQHNnGKMvRJFoB00MAWgIR0CRpohMajvedX2UKGgGR0BtYn9YOlO5aAdNBwFoCEdAkaflstTUAnV9lChoBkdAb2ygElme2GgHTSkBaAhHQJGobjFQ2uR1fZQoaAZHQHMWQZwXIltoB00LAWgIR0CRqPI5HVgAdX2UKGgGR0BuU4bdadMCaAdNBQFoCEdAkaj8KkVN6HV9lChoBkdAcXHweeWfLGgHTSABaAhHQJGpN1klNUR1fZQoaAZHQHKUmIXTEzhoB00vAWgIR0CRqVj4YaYNdX2UKGgGR0ByfCSwGGEgaAdNBQFoCEdAkapo4hllLHV9lChoBkdAcFh6vq1PWWgHTSUBaAhHQJGq09QoCuF1fZQoaAZHQG8Uw40dilVoB00nAWgIR0CRq3gPEsJ6dX2UKGgGR0BuMuCEpRXPaAdL/WgIR0CRq93irDIjdX2UKGgGR0BwWOkAPuohaAdNHAFoCEdAkb7AlfJFLHV9lChoBkdAbRRZX+2mYWgHTRwBaAhHQJG+320zCUJ1fZQoaAZHQHCQ54nndO9oB00SAWgIR0CRvwsiSq2jdX2UKGgGR0BujTC53C9AaAdNJwFoCEdAkb8JKFqSHXV9lChoBkdAbm3bGm1pkGgHTRoBaAhHQJG/1HkLhJl1fZQoaAZHQHDQmMbWEsdoB00jAWgIR0CRv+jy4FzNdX2UKGgGR0ByDMojOcDsaAdNEgFoCEdAkcD5IYm9hHV9lChoBkdAcd7ojOcDsGgHTQQBaAhHQJHCFf4REnd1fZQoaAZHQG3132/SH/NoB00NAWgIR0CRwjdS2phndX2UKGgGR0BsOdcjZ+QVaAdNJwFoCEdAkcK0DhcZ+HV9lChoBkdAckUuX/o7m2gHS/1oCEdAkcSSM98qnXV9lChoBkdAcaY9t/FzdWgHTXUBaAhHQJHFDHmzSkV1fZQoaAZHQHJmVgYxcmloB01lAWgIR0CRxRQkHD77dX2UKGgGR0Btmphx5s0paAdNPgFoCEdAkcXCtFKChHV9lChoBkdAcopnEVFhHGgHTT4BaAhHQJHGXIYFaB91fZQoaAZHQG3xsJY1YQtoB00eAWgIR0CRxoWhAWzodX2UKGgGR0Bypihdt2s8aAdL+2gIR0CRx1l/pdKNdX2UKGgGR0Bv5S5PM0P6aAdNEAFoCEdAkcfzxgAp8XV9lChoBkdAbnASJ0nw5WgHTRgBaAhHQJHIHJq7Acl1fZQoaAZHQHE7EjHGS6loB00HAWgIR0CRyQ6fra/RdX2UKGgGR0BwQ2rtE5QxaAdNFgFoCEdAkctnlXA/LXV9lChoBkdAcs9HVwxWUGgHTQABaAhHQJHMELF4s3B1fZQoaAZHQHAPiVB2OhloB018AWgIR0CRzE0RODaodX2UKGgGR0BxrsV1wHZ9aAdNYQFoCEdAkcxl3+uNgnV9lChoBkdAckEiKBNEgGgHTTQBaAhHQJHNZo24usd1fZQoaAZHQG6oHBk7OmloB00NAWgIR0CRzl/8VHnVdX2UKGgGR0Bv9x86V+qjaAdNXgFoCEdAkc9yYLLIP3V9lChoBkdAcGXR6F/QSmgHTRIBaAhHQJHPflhgE2Z1fZQoaAZHQHC1G/FirktoB00lAWgIR0CRz5AZKnNxdX2UKGgGR0Bv5x2nsLOSaAdNFQFoCEdAkdAj+vQnhXV9lChoBkdAcAju0TlDGGgHTQQBaAhHQJHQS6MBIWh1fZQoaAZHQHGqns1KoQ5oB00PAWgIR0CR0SUONHYpdX2UKGgGR0BvmdgH/tIDaAdNSAFoCEdAkdF33YcvNHV9lChoBkdAcfbiQkona2gHTQcBaAhHQJHRppRGc4J1fZQoaAZHQHCTaBI4EOloB01vAWgIR0CR0a7eVLSNdX2UKGgGR0BxelGOMl1KaAdNBAFoCEdAkdMXVwxWUHV9lChoBkdAcAWvFm4Aj2gHTWIBaAhHQJHTSYIBzWB1fZQoaAZHQG9A/NZ/0/ZoB00KAWgIR0CR0/5EMLF5dX2UKGgGR0BuRQ5ggHNYaAdNGgFoCEdAkdQ1PnB+F3V9lChoBkdAchu7fYSQHWgHTUABaAhHQJHVnnJT2nN1fZQoaAZHQG/YMIeHSF5oB01SAWgIR0CR11v+OwPidX2UKGgGR0Bwtcckt29taAdNAAFoCEdAkdd+A3DNyHV9lChoBkdAcyvQDFId2mgHTRgBaAhHQJHXhWyTpxF1fZQoaAZHQHJu5J04iotoB0v+aAhHQJHXl76YVqN1fZQoaAZHQHJMOQyRB/toB007AWgIR0CR154IKMNudX2UKGgGR0BydC/Ho5ggaAdNMwFoCEdAkdhHfZVXFXV9lChoBkdAcciPkJa7mWgHTRoBaAhHQJHZK0mdAgR1fZQoaAZHQHDra/qPfbdoB01fAWgIR0CR2ZGEPDpDdX2UKGgGR0Bsex7JGOMmaAdNHQFoCEdAkdnCdz4k/3V9lChoBkdAcB32DQJHAmgHTS0BaAhHQJHaNvkzXSV1fZQoaAZHQG/wHEdeY2NoB01TAWgIR0CR2xCiRGMGdX2UKGgGR0BwPJhMJx//aAdNKAFoCEdAkduHktEofHV9lChoBkdAbbUq4H5aeWgHTRYBaAhHQJHcJg8bJfZ1fZQoaAZHQHBnhiLEUCdoB00kAWgIR0CR3FACnxaxdX2UKGgGR0Bw1HOgQHzIaAdNWQFoCEdAkd0CdJ8OTnVlLg=="
|
| 49 |
+
},
|
| 50 |
+
"ep_success_buffer": {
|
| 51 |
+
":type:": "<class 'collections.deque'>",
|
| 52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
| 53 |
+
},
|
| 54 |
+
"_n_updates": 248,
|
| 55 |
+
"observation_space": {
|
| 56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
| 57 |
+
":serialized:": "gAWVdwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZROdWIu",
|
| 58 |
+
"dtype": "float32",
|
| 59 |
+
"bounded_below": "[ True True True True True True True True]",
|
| 60 |
+
"bounded_above": "[ True True True True True True True True]",
|
| 61 |
+
"_shape": [
|
| 62 |
+
8
|
| 63 |
+
],
|
| 64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
| 65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
| 66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
| 67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
| 68 |
+
"_np_random": null
|
| 69 |
+
},
|
| 70 |
+
"action_space": {
|
| 71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
| 72 |
+
":serialized:": "gAWV3AAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZROdWIu",
|
| 73 |
+
"n": "4",
|
| 74 |
+
"start": "0",
|
| 75 |
+
"_shape": [],
|
| 76 |
+
"dtype": "int64",
|
| 77 |
+
"_np_random": null
|
| 78 |
+
},
|
| 79 |
+
"n_envs": 16,
|
| 80 |
+
"n_steps": 1024,
|
| 81 |
+
"gamma": 0.999,
|
| 82 |
+
"gae_lambda": 0.98,
|
| 83 |
+
"ent_coef": 0.01,
|
| 84 |
+
"vf_coef": 0.5,
|
| 85 |
+
"max_grad_norm": 0.5,
|
| 86 |
+
"batch_size": 64,
|
| 87 |
+
"n_epochs": 4,
|
| 88 |
+
"clip_range": {
|
| 89 |
+
":type:": "<class 'function'>",
|
| 90 |
+
":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEyL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTIvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
| 91 |
+
},
|
| 92 |
+
"clip_range_vf": null,
|
| 93 |
+
"normalize_advantage": true,
|
| 94 |
+
"target_kl": null,
|
| 95 |
+
"lr_schedule": {
|
| 96 |
+
":type:": "<class 'function'>",
|
| 97 |
+
":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEyL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTIvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
| 98 |
+
}
|
| 99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4316f7efabbea099ea0cbe061d9b982f24ccc147da54e5b2fb46b186f5f2ca75
|
| 3 |
+
size 88695
|
ppo-LunarLander-v2/policy.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bf7f823807c8ad127b4e4040afd11d73c1a4c19523d1333379c922734a3a0990
|
| 3 |
+
size 44095
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:07c7431cf6005e7d8f367d79e995f63e2f9b981a37e3437b795d058f9af4308b
|
| 3 |
+
size 1261
|
ppo-LunarLander-v2/system_info.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
- OS: Linux-6.6.105+-x86_64-with-glibc2.35 # 1 SMP Thu Oct 2 10:42:05 UTC 2025
|
| 2 |
+
- Python: 3.12.12
|
| 3 |
+
- Stable-Baselines3: 2.0.0a5
|
| 4 |
+
- PyTorch: 2.9.0+cu126
|
| 5 |
+
- GPU Enabled: True
|
| 6 |
+
- Numpy: 2.0.2
|
| 7 |
+
- Cloudpickle: 3.1.2
|
| 8 |
+
- Gymnasium: 0.28.1
|
| 9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8bd23c4f9e1a7048de195c40f505b4e669718563213bc57a22b0a0506b2dd8bd
|
| 3 |
+
size 145101
|
results.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"mean_reward": 266.8738858639016, "std_reward": 21.02508988138762, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2026-01-29T06:26:53.457545"}
|