adding main files
Browse files- .gitignore +3 -0
- Dockerfile +7 -0
- eval.py +147 -0
- mteb_meta.py +118 -0
- requirements.txt +5 -0
.gitignore
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
.DS_Store
|
| 3 |
+
*.json
|
Dockerfile
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM huggingface/transformers-pytorch-cpu:latest
|
| 2 |
+
|
| 3 |
+
# install requirements
|
| 4 |
+
COPY requirements.txt .
|
| 5 |
+
RUN pip install -r requirements.txt
|
| 6 |
+
|
| 7 |
+
|
eval.py
ADDED
|
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from mteb import MTEB
|
| 2 |
+
import torch
|
| 3 |
+
import clip
|
| 4 |
+
|
| 5 |
+
import numpy as np
|
| 6 |
+
|
| 7 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 8 |
+
MODEL, PREPROCESS = clip.load("RN50", device=DEVICE)
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
TASK_LIST_CLASSIFICATION = [
|
| 12 |
+
"AmazonCounterfactualClassification",
|
| 13 |
+
"AmazonPolarityClassification",
|
| 14 |
+
"AmazonReviewsClassification",
|
| 15 |
+
"Banking77Classification",
|
| 16 |
+
"EmotionClassification",
|
| 17 |
+
"ImdbClassification",
|
| 18 |
+
"MassiveIntentClassification",
|
| 19 |
+
"MassiveScenarioClassification",
|
| 20 |
+
"MTOPDomainClassification",
|
| 21 |
+
"MTOPIntentClassification",
|
| 22 |
+
"ToxicConversationsClassification",
|
| 23 |
+
"TweetSentimentExtractionClassification",
|
| 24 |
+
]
|
| 25 |
+
|
| 26 |
+
TASK_LIST_CLUSTERING = [
|
| 27 |
+
"ArxivClusteringP2P",
|
| 28 |
+
"ArxivClusteringS2S",
|
| 29 |
+
"BiorxivClusteringP2P",
|
| 30 |
+
"BiorxivClusteringS2S",
|
| 31 |
+
"MedrxivClusteringP2P",
|
| 32 |
+
"MedrxivClusteringS2S",
|
| 33 |
+
"RedditClustering",
|
| 34 |
+
"RedditClusteringP2P",
|
| 35 |
+
"StackExchangeClustering",
|
| 36 |
+
"StackExchangeClusteringP2P",
|
| 37 |
+
"TwentyNewsgroupsClustering",
|
| 38 |
+
]
|
| 39 |
+
|
| 40 |
+
TASK_LIST_PAIR_CLASSIFICATION = [
|
| 41 |
+
"SprintDuplicateQuestions",
|
| 42 |
+
"TwitterSemEval2015",
|
| 43 |
+
"TwitterURLCorpus",
|
| 44 |
+
]
|
| 45 |
+
|
| 46 |
+
TASK_LIST_RERANKING = [
|
| 47 |
+
"AskUbuntuDupQuestions",
|
| 48 |
+
"MindSmallReranking",
|
| 49 |
+
"SciDocsRR",
|
| 50 |
+
"StackOverflowDupQuestions",
|
| 51 |
+
]
|
| 52 |
+
|
| 53 |
+
TASK_LIST_RETRIEVAL = [
|
| 54 |
+
"ArguAna",
|
| 55 |
+
"ClimateFEVER",
|
| 56 |
+
"CQADupstackAndroidRetrieval",
|
| 57 |
+
"CQADupstackEnglishRetrieval",
|
| 58 |
+
"CQADupstackGamingRetrieval",
|
| 59 |
+
"CQADupstackGisRetrieval",
|
| 60 |
+
"CQADupstackMathematicaRetrieval",
|
| 61 |
+
"CQADupstackPhysicsRetrieval",
|
| 62 |
+
"CQADupstackProgrammersRetrieval",
|
| 63 |
+
"CQADupstackStatsRetrieval",
|
| 64 |
+
"CQADupstackTexRetrieval",
|
| 65 |
+
"CQADupstackUnixRetrieval",
|
| 66 |
+
"CQADupstackWebmastersRetrieval",
|
| 67 |
+
"CQADupstackWordpressRetrieval",
|
| 68 |
+
"DBPedia",
|
| 69 |
+
"FEVER",
|
| 70 |
+
"FiQA2018",
|
| 71 |
+
"HotpotQA",
|
| 72 |
+
"MSMARCO",
|
| 73 |
+
"NFCorpus",
|
| 74 |
+
"NQ",
|
| 75 |
+
"QuoraRetrieval",
|
| 76 |
+
"SCIDOCS",
|
| 77 |
+
"SciFact",
|
| 78 |
+
"Touche2020",
|
| 79 |
+
"TRECCOVID",
|
| 80 |
+
]
|
| 81 |
+
|
| 82 |
+
TASK_LIST_STS = [
|
| 83 |
+
"BIOSSES",
|
| 84 |
+
"SICK-R",
|
| 85 |
+
"STS12",
|
| 86 |
+
"STS13",
|
| 87 |
+
"STS14",
|
| 88 |
+
"STS15",
|
| 89 |
+
"STS16",
|
| 90 |
+
"STS17",
|
| 91 |
+
"STS22",
|
| 92 |
+
"STSBenchmark",
|
| 93 |
+
"SummEval",
|
| 94 |
+
]
|
| 95 |
+
|
| 96 |
+
TASK_LIST = TASK_LIST_CLASSIFICATION
|
| 97 |
+
+ TASK_LIST_CLUSTERING
|
| 98 |
+
+ TASK_LIST_PAIR_CLASSIFICATION
|
| 99 |
+
+ TASK_LIST_RERANKING
|
| 100 |
+
+ TASK_LIST_RETRIEVAL
|
| 101 |
+
+ TASK_LIST_STS
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
class ClipModel:
|
| 107 |
+
"""
|
| 108 |
+
This is an wrapper class for the clip embedding model.
|
| 109 |
+
"""
|
| 110 |
+
|
| 111 |
+
def encode(self, sentences, batch_size=1, **kwargs):
|
| 112 |
+
"""Returns a list of embeddings for the given sentences.
|
| 113 |
+
Args:
|
| 114 |
+
sentences (`List[str]`): List of sentences to encode
|
| 115 |
+
batch_size (`int`): Batch size for the encoding
|
| 116 |
+
|
| 117 |
+
Returns:
|
| 118 |
+
`List[np.ndarray]` or `List[tensor]`: List of embeddings for the given sentences
|
| 119 |
+
"""
|
| 120 |
+
embeddings = []
|
| 121 |
+
for i in range(0, len(sentences)):
|
| 122 |
+
batch = sentences[i]
|
| 123 |
+
try:
|
| 124 |
+
text = clip.tokenize(batch).to(DEVICE)[
|
| 125 |
+
:, :77
|
| 126 |
+
] # clip.tokenize(batch).to(DEVICE)
|
| 127 |
+
|
| 128 |
+
with torch.no_grad():
|
| 129 |
+
text_features = MODEL.encode_text(text)
|
| 130 |
+
|
| 131 |
+
except:
|
| 132 |
+
print("too long token")
|
| 133 |
+
text = clip.tokenize(batch[: (77 * 2)]).to(DEVICE)[
|
| 134 |
+
:, :77
|
| 135 |
+
] # clip.tokenize(batch).to(DEVICE)
|
| 136 |
+
|
| 137 |
+
with torch.no_grad():
|
| 138 |
+
text_features = MODEL.encode_text(text)
|
| 139 |
+
|
| 140 |
+
embeddings.append(text_features.cpu().numpy().squeeze())
|
| 141 |
+
|
| 142 |
+
return embeddings
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
model = ClipModel()
|
| 146 |
+
evaluation = MTEB(tasks=TASK_LIST, output_folder=f"results/clip/", task_langs=["en"])
|
| 147 |
+
evaluation.run(model)
|
mteb_meta.py
ADDED
|
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Usage: python mteb_meta.py path_to_results_folder
|
| 3 |
+
|
| 4 |
+
Creates evaluation results metadata for the model card.
|
| 5 |
+
E.g.
|
| 6 |
+
---
|
| 7 |
+
tags:
|
| 8 |
+
- mteb
|
| 9 |
+
model-index:
|
| 10 |
+
- name: SGPT-5.8B-weightedmean-msmarco-specb-bitfit
|
| 11 |
+
results:
|
| 12 |
+
- task:
|
| 13 |
+
type: classification
|
| 14 |
+
dataset:
|
| 15 |
+
type: mteb/banking77
|
| 16 |
+
name: MTEB Banking77
|
| 17 |
+
config: default
|
| 18 |
+
split: test
|
| 19 |
+
revision: 44fa15921b4c889113cc5df03dd4901b49161ab7
|
| 20 |
+
metrics:
|
| 21 |
+
- type: accuracy
|
| 22 |
+
value: 84.49350649350649
|
| 23 |
+
---
|
| 24 |
+
"""
|
| 25 |
+
|
| 26 |
+
import json
|
| 27 |
+
import logging
|
| 28 |
+
import os
|
| 29 |
+
import sys
|
| 30 |
+
|
| 31 |
+
from mteb import MTEB
|
| 32 |
+
|
| 33 |
+
logging.basicConfig(level=logging.INFO)
|
| 34 |
+
logger = logging.getLogger(__name__)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
results_folder = sys.argv[1].strip("/")
|
| 38 |
+
model_name = results_folder.split("/")[-1]
|
| 39 |
+
|
| 40 |
+
all_results = {}
|
| 41 |
+
|
| 42 |
+
for file_name in os.listdir(results_folder):
|
| 43 |
+
if not file_name.endswith(".json"):
|
| 44 |
+
logger.info(f"Skipping non-json {file_name}")
|
| 45 |
+
continue
|
| 46 |
+
with open(os.path.join(results_folder, file_name), "r", encoding="utf-8") as f:
|
| 47 |
+
results = json.load(f)
|
| 48 |
+
all_results = {**all_results, **{file_name.replace(".json", ""): results}}
|
| 49 |
+
|
| 50 |
+
MARKER = "---"
|
| 51 |
+
TAGS = "tags:"
|
| 52 |
+
MTEB_TAG = "- mteb"
|
| 53 |
+
HEADER = "model-index:"
|
| 54 |
+
MODEL = f"- name: {model_name}"
|
| 55 |
+
RES = " results:"
|
| 56 |
+
|
| 57 |
+
META_STRING = "\n".join([MARKER, TAGS, MTEB_TAG, HEADER, MODEL, RES])
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
ONE_TASK = " - task:\n type: {}\n dataset:\n type: {}\n name: {}\n config: {}\n split: {}\n revision: {}\n metrics:"
|
| 61 |
+
ONE_METRIC = " - type: {}\n value: {}"
|
| 62 |
+
SKIP_KEYS = ["std", "evaluation_time", "main_score", "threshold"]
|
| 63 |
+
|
| 64 |
+
for ds_name, res_dict in sorted(all_results.items()):
|
| 65 |
+
mteb_desc = (
|
| 66 |
+
MTEB(tasks=[ds_name.replace("CQADupstackRetrieval", "CQADupstackAndroidRetrieval")])
|
| 67 |
+
.tasks[0]
|
| 68 |
+
.description
|
| 69 |
+
)
|
| 70 |
+
hf_hub_name = mteb_desc.get("hf_hub_name", mteb_desc.get("beir_name"))
|
| 71 |
+
if "CQADupstack" in ds_name:
|
| 72 |
+
hf_hub_name = "BeIR/cqadupstack"
|
| 73 |
+
mteb_type = mteb_desc["type"]
|
| 74 |
+
revision = res_dict.get("dataset_revision") # Okay if it's None
|
| 75 |
+
split = "test"
|
| 76 |
+
if ds_name == "MSMARCO":
|
| 77 |
+
split = "dev" if "dev" in res_dict else "validation"
|
| 78 |
+
if split not in res_dict:
|
| 79 |
+
logger.info(f"Skipping {ds_name} as split {split} not present.")
|
| 80 |
+
continue
|
| 81 |
+
res_dict = res_dict.get(split)
|
| 82 |
+
for lang in mteb_desc["eval_langs"]:
|
| 83 |
+
mteb_name = f"MTEB {ds_name}"
|
| 84 |
+
mteb_name += f" ({lang})" if len(mteb_desc["eval_langs"]) > 1 else ""
|
| 85 |
+
# For English there is no language key if it's the only language
|
| 86 |
+
test_result_lang = res_dict.get(lang) if len(mteb_desc["eval_langs"]) > 1 else res_dict
|
| 87 |
+
# Skip if the language was not found but it has other languages
|
| 88 |
+
if test_result_lang is None:
|
| 89 |
+
continue
|
| 90 |
+
META_STRING += "\n" + ONE_TASK.format(
|
| 91 |
+
mteb_type,
|
| 92 |
+
hf_hub_name,
|
| 93 |
+
mteb_name,
|
| 94 |
+
lang if len(mteb_desc["eval_langs"]) > 1 else "default",
|
| 95 |
+
split,
|
| 96 |
+
revision
|
| 97 |
+
)
|
| 98 |
+
for (metric, score) in test_result_lang.items():
|
| 99 |
+
if not isinstance(score, dict):
|
| 100 |
+
score = {metric: score}
|
| 101 |
+
for sub_metric, sub_score in score.items():
|
| 102 |
+
if any([x in sub_metric for x in SKIP_KEYS]):
|
| 103 |
+
continue
|
| 104 |
+
META_STRING += "\n" + ONE_METRIC.format(
|
| 105 |
+
f"{metric}_{sub_metric}" if metric != sub_metric else metric,
|
| 106 |
+
# All MTEB scores are 0-1, multiply them by 100 for 3 reasons:
|
| 107 |
+
# 1) It's easier to visually digest (You need two chars less: "0.1" -> "1")
|
| 108 |
+
# 2) Others may multiply them by 100, when building on MTEB making it confusing what the range is
|
| 109 |
+
# This happend with Text and Code Embeddings paper (OpenAI) vs original BEIR paper
|
| 110 |
+
# 3) It's accepted practice (SuperGLUE, GLUE are 0-100)
|
| 111 |
+
sub_score * 100,
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
META_STRING += "\n" + MARKER
|
| 115 |
+
if os.path.exists("./mteb_metadata.md"):
|
| 116 |
+
logger.warning("Overwriting mteb_metadata.md")
|
| 117 |
+
with open(f"./mteb_metadata.md", "w") as f:
|
| 118 |
+
f.write(META_STRING)
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
mteb
|
| 2 |
+
ftfy
|
| 3 |
+
regex
|
| 4 |
+
tqdm
|
| 5 |
+
git+https://github.com/openai/CLIP.git
|