Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,29 @@
|
|
| 1 |
---
|
| 2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: mit
|
| 3 |
+
tags:
|
| 4 |
+
- int8
|
| 5 |
+
- Intel® Neural Compressor
|
| 6 |
+
- neural-compressor
|
| 7 |
+
- PostTrainingDynamic
|
| 8 |
+
datasets:
|
| 9 |
+
- cnn_dailymail
|
| 10 |
+
metrics:
|
| 11 |
+
- rougeLsum
|
| 12 |
---
|
| 13 |
+
|
| 14 |
+
# INT8 T5 large finetuned on CNN DailyMail
|
| 15 |
+
### Post-training dynamic quantization
|
| 16 |
+
This is an INT8 PyTorch model quantized with [huggingface/optimum-intel](https://github.com/huggingface/optimum-intel) through the usage of [Intel® Neural Compressor](https://github.com/intel/neural-compressor).
|
| 17 |
+
The original fp32 model comes from the fine-tuned model [sysresearch101/t5-large-finetuned-xsum-cnn](https://huggingface.co/sysresearch101/t5-large-finetuned-xsum-cnn).
|
| 18 |
+
### Evaluation result
|
| 19 |
+
| |INT8|FP32|
|
| 20 |
+
|---|:---:|:---:|
|
| 21 |
+
| **Accuracy (eval-rougeLsum)** | 29.6346 |29.7451|
|
| 22 |
+
| **Model size** |879M|3021M|
|
| 23 |
+
### Load with optimum:
|
| 24 |
+
```python
|
| 25 |
+
from optimum.intel.neural_compressor.quantization import IncQuantizedModelForSeq2SeqLM
|
| 26 |
+
int8_model = IncQuantizedModelForSeq2SeqLM.from_pretrained(
|
| 27 |
+
'Intel/t5-large-finetuned-xsum-cnn-int8-dynamic',
|
| 28 |
+
)
|
| 29 |
+
```
|