File size: 7,609 Bytes
f2c763e
 
 
 
 
 
 
a2d5222
b72a818
 
 
 
 
 
 
 
 
 
f2c763e
 
 
b72a818
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c67594f
b72a818
f2c763e
2a59758
f2c763e
b72a818
f2c763e
2450b74
f2c763e
b72a818
 
 
f2c763e
b72a818
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96c13eb
 
 
 
6657632
 
 
 
 
 
 
 
 
 
b72a818
 
 
96c13eb
 
 
 
 
 
 
 
 
 
 
 
 
b72a818
 
 
 
 
 
 
 
 
6657632
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b72a818
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
---
tags:
- text-generation-inference
- transformers
- unsloth
- qwen3_vl
- trl
- sft
- chemistry
- code
- climate
- art
- biology
- finance
- legal
- music
- medical
- agent
license: apache-2.0
language:
- en
- ab
- aa
- ae
- af
- ak
- am
- an
- ar
- as
- av
- ay
- az
- ba
- be
- bg
- bh
- bi
- bm
- bn
- bo
- br
- bs
- ca
- ce
- ch
- co
- cr
- cs
- cu
- cv
- cy
- da
- de
- dv
- dz
- ee
- el
- eo
- es
- et
- eu
- fa
- ff
- fi
- fj
- fo
- fr
- fy
- ga
- gd
- gl
- gn
- gv
- ha
- he
- hi
- ho
- gu
- hr
- ht
- hu
- hz
- hy
- id
- ia
- ig
- ie
- ik
- ii
- is
- io
- iu
- it
- jv
- ja
- kg
- ka
- kj
- ki
- kl
- kk
- kn
- km
- kr
- ko
- ku
- ks
- kw
- kv
- la
- ky
- lg
- lb
- ln
- li
- lt
- lo
- lv
- lu
- mg
- mi
- mh
- ml
- mk
- mr
- mn
- mt
- ms
- na
- my
- nd
- nb
- ng
- nl
- ne
- 'no'
- nn
- nv
- nr
- oc
- oj
- om
- ny
- os
- or
- pa
- pi
- pl
- ps
- pt
- rm
- rn
- qu
- ro
- ru
- sn
- rw
- so
- sa
- sc
- sd
pipeline_tag: image-text-to-text
library_name: transformers
---
<img src='bannerocr.png'>

# 🖼️ Next OCR 8B

### *Compact OCR AI — Accurate, Fast, Multilingual, Math-Optimized*

[![License: MIT](https://img.shields.io/badge/License-MIT-blue.svg)](https://opensource.org/licenses/MIT)
[![Language: Multilingual](https://img.shields.io/badge/Language-Multilingual-red.svg)]()
[![HuggingFace](https://img.shields.io/badge/🤗-Lamapi/Next--OCR--orange.svg)](https://huggingface.co/Lamapi/next-ocr)

---

## 📖 Overview

**Next OCR 8B** is an **8-billion parameter model** optimized for **optical character recognition (OCR) tasks** with **mathematical and tabular content understanding**.

Supports **multilingual OCR** (Turkish, English, German, Spanish, French, Chinese, Japanese, Korean, Russian...) with high accuracy, including structured documents like tables, forms, and formulas.

---

## ⚡ Highlights

* 🖼️ Accurate text extraction, including math and tables
* 🌍 Multilingual support (30+ languages)
* ⚡ Lightweight and efficient
* 💬 Instruction-tuned for document understanding and analysis

---

## 📊 Benchmark & Comparison

![image](https://cdn-uploads.huggingface.co/production/uploads/67d46bc5fe6ad6f6511d6f44/wLtEbJ9U3KCJe4OCxvAF7.png)

---

| Model                           | OCR-Bench Accuracy (%)   | Multilingual Accuracy (%) | Layout / Table Understanding (%) |
| ------------------------------- | ------------------------ | ------------------------- | -------------------------------- |
| **Next OCR**                    | **99.0**                 | **96.8**                  | **95.3**                         |
| PaddleOCR                       | 95.2                     | 93.9                      | 95.3                             |
| Deepseek OCR                    | 90.6                     | 87.4                      | 86.1                             |
| Tesseract                       | 92.0                     | 88.4                      | 72.0                             |
| EasyOCR                         | 90.4                     | 84.7                      | 78.9                             |
| Google Cloud Vision / DocAI     | 98.7                     | 95.5                      | 93.6                             |
| Amazon Textract                 | 94.7                     | 86.2                      | 86.1                             |
| Azure Document Intelligence     | 95.1                     | 93.6                      | 91.4                             |

---

| Model                       | Handwriting (%) | Scene Text (%) | Complex Tables (%) | 
| --------------------------- | --------------- | -------------- | ------------------ |
| **Next OCR**                | 92              | 96             | 91                 |
| PaddleOCR                   | 88              | 92             | 90                 |
| Deepseek OCR                | 80              | 85             | 83                 |
| Tesseract                   | 75              | 88             | 70                 |
| EasyOCR                     | 78              | 86             | 75                 |
| Google Cloud Vision / DocAI | 90              | 95             | 92                 |
| Amazon Textract             | 85              | 90             | 88                 |
| Azure Document Intelligence | 87              | 91             | 89                 |

---

## 🚀 Installation & Usage

```python
from transformers import AutoTokenizer, AutoModelForVision2Seq
import torch

model_id = "Lamapi/next-ocr"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForVision2Seq.from_pretrained(model_id, torch_dtype=torch.float16)

img = Image.open("image.jpg")

# ATTENTION: The content list must include both an image and text.
messages = [
    {"role": "system", "content": "You are Next-OCR, an helpful AI assistant trained by Lamapi."},
    {
        "role": "user",
        "content": [
            {"type": "image", "image": img},
            {"type": "text", "text": "Read the text in this image and summarize it."}
        ]
    }
]

# Apply the chat template correctly
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(text=prompt, images=[img], return_tensors="pt").to(model.device)

with torch.no_grad():
    generated = model.generate(**inputs, max_new_tokens=256)

print(processor.decode(generated[0], skip_special_tokens=True))
```

---

## 🧩 Key Features

| Feature                    | Description                                                     |
| -------------------------- | --------------------------------------------------------------- |
| 🖼️ High-Accuracy OCR      | Extracts text from images, documents, and screenshots reliably. |
| 🇹🇷 Multilingual Support  | Works with 30+ languages including Turkish.                     |
| ⚡ Lightweight & Efficient  | Optimized for resource-constrained environments.                |
| 📄 Layout & Math Awareness | Handles tables, forms, and mathematical formulas.               |
| 🏢 Reliable Outputs        | Suitable for enterprise document workflows.                     |

---

## 📐 Model Specifications

| Specification     | Details                                                   |
| ----------------- | --------------------------------------------------------- |
| **Base Model**    | Qwen 3                                                    |
| **Parameters**    | 8 Billion                                                 |
| **Architecture**  | Vision + Transformer (OCR LLM)                            |
| **Modalities**    | Image-to-text                                             |
| **Fine-Tuning**   | OCR datasets with multilingual and math/tabular content   |
| **Optimizations** | Quantization-ready, FP16 support                          |
| **Primary Focus** | Text extraction, document understanding, mathematical OCR |

---

## 🎯 Ideal Use Cases

* Document digitization
* Invoice & receipt processing
* Multilingual OCR pipelines
* Tables, forms, and formulas extraction
* Enterprise document management

---

## 📄 License

MIT License — free for commercial & non-commercial use.

---

## 📞 Contact & Support

* 📧 Email: [lamapicontact@gmail.com](mailto:lamapicontact@gmail.com)
* 🤗 HuggingFace: [Lamapi](https://huggingface.co/Lamapi)

---

> **Next OCR** — Compact *OCR + math-capable* AI, blending **accuracy**, **speed**, and **multilingual document intelligence**.

[![Follow on HuggingFace](https://img.shields.io/badge/Follow-HuggingFace-yellow?logo=huggingface)](https://huggingface.co/Lamapi)