File size: 7,609 Bytes
f2c763e a2d5222 b72a818 f2c763e b72a818 c67594f b72a818 f2c763e 2a59758 f2c763e b72a818 f2c763e 2450b74 f2c763e b72a818 f2c763e b72a818 96c13eb 6657632 b72a818 96c13eb b72a818 6657632 b72a818 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
---
tags:
- text-generation-inference
- transformers
- unsloth
- qwen3_vl
- trl
- sft
- chemistry
- code
- climate
- art
- biology
- finance
- legal
- music
- medical
- agent
license: apache-2.0
language:
- en
- ab
- aa
- ae
- af
- ak
- am
- an
- ar
- as
- av
- ay
- az
- ba
- be
- bg
- bh
- bi
- bm
- bn
- bo
- br
- bs
- ca
- ce
- ch
- co
- cr
- cs
- cu
- cv
- cy
- da
- de
- dv
- dz
- ee
- el
- eo
- es
- et
- eu
- fa
- ff
- fi
- fj
- fo
- fr
- fy
- ga
- gd
- gl
- gn
- gv
- ha
- he
- hi
- ho
- gu
- hr
- ht
- hu
- hz
- hy
- id
- ia
- ig
- ie
- ik
- ii
- is
- io
- iu
- it
- jv
- ja
- kg
- ka
- kj
- ki
- kl
- kk
- kn
- km
- kr
- ko
- ku
- ks
- kw
- kv
- la
- ky
- lg
- lb
- ln
- li
- lt
- lo
- lv
- lu
- mg
- mi
- mh
- ml
- mk
- mr
- mn
- mt
- ms
- na
- my
- nd
- nb
- ng
- nl
- ne
- 'no'
- nn
- nv
- nr
- oc
- oj
- om
- ny
- os
- or
- pa
- pi
- pl
- ps
- pt
- rm
- rn
- qu
- ro
- ru
- sn
- rw
- so
- sa
- sc
- sd
pipeline_tag: image-text-to-text
library_name: transformers
---
<img src='bannerocr.png'>
# 🖼️ Next OCR 8B
### *Compact OCR AI — Accurate, Fast, Multilingual, Math-Optimized*
[](https://opensource.org/licenses/MIT)
[]()
[](https://huggingface.co/Lamapi/next-ocr)
---
## 📖 Overview
**Next OCR 8B** is an **8-billion parameter model** optimized for **optical character recognition (OCR) tasks** with **mathematical and tabular content understanding**.
Supports **multilingual OCR** (Turkish, English, German, Spanish, French, Chinese, Japanese, Korean, Russian...) with high accuracy, including structured documents like tables, forms, and formulas.
---
## ⚡ Highlights
* 🖼️ Accurate text extraction, including math and tables
* 🌍 Multilingual support (30+ languages)
* ⚡ Lightweight and efficient
* 💬 Instruction-tuned for document understanding and analysis
---
## 📊 Benchmark & Comparison

---
| Model | OCR-Bench Accuracy (%) | Multilingual Accuracy (%) | Layout / Table Understanding (%) |
| ------------------------------- | ------------------------ | ------------------------- | -------------------------------- |
| **Next OCR** | **99.0** | **96.8** | **95.3** |
| PaddleOCR | 95.2 | 93.9 | 95.3 |
| Deepseek OCR | 90.6 | 87.4 | 86.1 |
| Tesseract | 92.0 | 88.4 | 72.0 |
| EasyOCR | 90.4 | 84.7 | 78.9 |
| Google Cloud Vision / DocAI | 98.7 | 95.5 | 93.6 |
| Amazon Textract | 94.7 | 86.2 | 86.1 |
| Azure Document Intelligence | 95.1 | 93.6 | 91.4 |
---
| Model | Handwriting (%) | Scene Text (%) | Complex Tables (%) |
| --------------------------- | --------------- | -------------- | ------------------ |
| **Next OCR** | 92 | 96 | 91 |
| PaddleOCR | 88 | 92 | 90 |
| Deepseek OCR | 80 | 85 | 83 |
| Tesseract | 75 | 88 | 70 |
| EasyOCR | 78 | 86 | 75 |
| Google Cloud Vision / DocAI | 90 | 95 | 92 |
| Amazon Textract | 85 | 90 | 88 |
| Azure Document Intelligence | 87 | 91 | 89 |
---
## 🚀 Installation & Usage
```python
from transformers import AutoTokenizer, AutoModelForVision2Seq
import torch
model_id = "Lamapi/next-ocr"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForVision2Seq.from_pretrained(model_id, torch_dtype=torch.float16)
img = Image.open("image.jpg")
# ATTENTION: The content list must include both an image and text.
messages = [
{"role": "system", "content": "You are Next-OCR, an helpful AI assistant trained by Lamapi."},
{
"role": "user",
"content": [
{"type": "image", "image": img},
{"type": "text", "text": "Read the text in this image and summarize it."}
]
}
]
# Apply the chat template correctly
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(text=prompt, images=[img], return_tensors="pt").to(model.device)
with torch.no_grad():
generated = model.generate(**inputs, max_new_tokens=256)
print(processor.decode(generated[0], skip_special_tokens=True))
```
---
## 🧩 Key Features
| Feature | Description |
| -------------------------- | --------------------------------------------------------------- |
| 🖼️ High-Accuracy OCR | Extracts text from images, documents, and screenshots reliably. |
| 🇹🇷 Multilingual Support | Works with 30+ languages including Turkish. |
| ⚡ Lightweight & Efficient | Optimized for resource-constrained environments. |
| 📄 Layout & Math Awareness | Handles tables, forms, and mathematical formulas. |
| 🏢 Reliable Outputs | Suitable for enterprise document workflows. |
---
## 📐 Model Specifications
| Specification | Details |
| ----------------- | --------------------------------------------------------- |
| **Base Model** | Qwen 3 |
| **Parameters** | 8 Billion |
| **Architecture** | Vision + Transformer (OCR LLM) |
| **Modalities** | Image-to-text |
| **Fine-Tuning** | OCR datasets with multilingual and math/tabular content |
| **Optimizations** | Quantization-ready, FP16 support |
| **Primary Focus** | Text extraction, document understanding, mathematical OCR |
---
## 🎯 Ideal Use Cases
* Document digitization
* Invoice & receipt processing
* Multilingual OCR pipelines
* Tables, forms, and formulas extraction
* Enterprise document management
---
## 📄 License
MIT License — free for commercial & non-commercial use.
---
## 📞 Contact & Support
* 📧 Email: [lamapicontact@gmail.com](mailto:lamapicontact@gmail.com)
* 🤗 HuggingFace: [Lamapi](https://huggingface.co/Lamapi)
---
> **Next OCR** — Compact *OCR + math-capable* AI, blending **accuracy**, **speed**, and **multilingual document intelligence**.
[](https://huggingface.co/Lamapi) |