Ludo33 commited on
Commit
7bfb390
·
verified ·
1 Parent(s): ab44d94

End of training

Browse files
Files changed (1) hide show
  1. README.md +81 -0
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: EuroBERT/EuroBERT-210m
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - accuracy
9
+ - f1
10
+ model-index:
11
+ - name: eurobert210m_RSE_v1
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # eurobert210m_RSE_v1
19
+
20
+ This model is a fine-tuned version of [EuroBERT/EuroBERT-210m](https://huggingface.co/EuroBERT/EuroBERT-210m) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.0069
23
+ - Accuracy: 0.9982
24
+ - F1: 0.9982
25
+
26
+ ## Model description
27
+
28
+ More information needed
29
+
30
+ ## Intended uses & limitations
31
+
32
+ More information needed
33
+
34
+ ## Training and evaluation data
35
+
36
+ More information needed
37
+
38
+ ## Training procedure
39
+
40
+ ### Training hyperparameters
41
+
42
+ The following hyperparameters were used during training:
43
+ - learning_rate: 5e-05
44
+ - train_batch_size: 32
45
+ - eval_batch_size: 32
46
+ - seed: 42
47
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
48
+ - lr_scheduler_type: linear
49
+ - num_epochs: 100
50
+ - mixed_precision_training: Native AMP
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
55
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
56
+ | 0.7448 | 1.0 | 138 | 0.2380 | 0.9194 | 0.9200 |
57
+ | 0.3157 | 2.0 | 276 | 0.1846 | 0.9421 | 0.9419 |
58
+ | 0.2241 | 3.0 | 414 | 0.1905 | 0.9373 | 0.9371 |
59
+ | 0.1923 | 4.0 | 552 | 0.0821 | 0.9739 | 0.9739 |
60
+ | 0.1312 | 5.0 | 690 | 0.1449 | 0.9614 | 0.9616 |
61
+ | 0.1418 | 6.0 | 828 | 0.0782 | 0.9796 | 0.9795 |
62
+ | 0.1008 | 7.0 | 966 | 0.0579 | 0.9877 | 0.9877 |
63
+ | 0.0981 | 8.0 | 1104 | 0.0363 | 0.9893 | 0.9893 |
64
+ | 0.0723 | 9.0 | 1242 | 0.1002 | 0.9789 | 0.9789 |
65
+ | 0.0846 | 10.0 | 1380 | 0.0457 | 0.9907 | 0.9907 |
66
+ | 0.0779 | 11.0 | 1518 | 0.0620 | 0.9880 | 0.9880 |
67
+ | 0.0676 | 12.0 | 1656 | 0.0314 | 0.9932 | 0.9932 |
68
+ | 0.0389 | 13.0 | 1794 | 0.0232 | 0.9950 | 0.9950 |
69
+ | 0.0453 | 14.0 | 1932 | 0.0145 | 0.9966 | 0.9966 |
70
+ | 0.0328 | 15.0 | 2070 | 0.0303 | 0.9936 | 0.9936 |
71
+ | 0.0316 | 16.0 | 2208 | 0.0247 | 0.9948 | 0.9948 |
72
+ | 0.0191 | 17.0 | 2346 | 0.0070 | 0.9984 | 0.9984 |
73
+ | 0.0209 | 18.0 | 2484 | 0.0069 | 0.9982 | 0.9982 |
74
+
75
+
76
+ ### Framework versions
77
+
78
+ - Transformers 4.48.3
79
+ - Pytorch 2.5.1+cu124
80
+ - Datasets 3.3.2
81
+ - Tokenizers 0.21.0