# This implements the workflow for applying the network to a directory of images and measuring network performance with metrics. # these transforms are used for inference to load and regularise inputs transforms: - _target_: AsDiscreted keys: ['@pred', '@label'] argmax: [true, false] to_onehot: '@num_classes' - _target_: ToTensord keys: ['@pred', '@label'] device: '@device' postprocessing: _target_: Compose transforms: $@transforms # inference handlers to load checkpoint, gather statistics val_handlers: - _target_: CheckpointLoader _disabled_: $not os.path.exists(@ckpt_path) load_path: '@ckpt_path' load_dict: model: '@network' - _target_: StatsHandler name: null # use engine.logger as the Logger object to log to output_transform: '$lambda x: None' - _target_: MetricsSaver save_dir: '@output_dir' metrics: ['val_accuracy'] metric_details: ['val_accuracy'] batch_transform: "$lambda x: [xx['image'].meta for xx in x]" summary_ops: "*" initialize: - "$monai.utils.set_determinism(seed=123)" - "$setattr(torch.backends.cudnn, 'benchmark', True)" run: - $@evaluator.run()