Diagnosis Models
Collection
Diagnosis with brain MRI or fMRI image. By Neurazum.
•
10 items
•
Updated
•
1
| Model | Test Size | Params | Accuracy | mAPᵛᵃᴵ | F1 Score | Recall | Precision |
|---|---|---|---|---|---|---|---|
| Vbai-2.5f | 224 | 129M | 71.71% | 72.41% | 71.21% | 69.58% | 76.64% |
| Vbai-2.5q | 224 | 220M | 82.44% | 84.40% | 80.95% | 83.99% | 80.08% |
| Model | Accuracy | mAPᵛᵃᴵ | F1 Score | Recall |
|---|---|---|---|---|
| Vbai-2.5f | 71.71% | 72.41% | 71.21% | 69.58% |
| Vbai-2.5q | 82.44% | 84.40% | 80.95% | 83.99% |
| Model | Accuracy | mAPᵛᵃᴵ | F1 Score | Recall |
|---|---|---|---|---|
| Vbai-2.5f | 95.48% | 98.78% | 95.49% | 95.48% |
| Vbai-2.5q | 97.14% | 99.65% | 97.15% | 97.14% |
The Vbai-2.5 model has been trained and developed to diagnose brain diseases using MRI or fMRI images. It indicates whether the patient has Parkinson's disease, dementia, and Alzheimer's risk, and shows tumor stages with a high accuracy rate. Unlike other Vbai models, its diagnostic capability is now consolidated into a single model.
This multi-task model also serves as the foundation of an image processing library. It can run and diagnose both classes separately or simultaneously.
Vbai models are developed exclusively for hospitals, universities, communities, health centres and science centres.
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
import cv2
import os
import torch.nn.functional as F
from sklearn.metrics import classification_report, confusion_matrix
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
MODEL_PATH = 'Vbai-2.5/model/path'
MODEL_TYPE = 'f'
DEMENTIA_DIR = 'dementia/data/dir'
TUMOR_DIR = 'tumor/data/dir'
TEST_IMAGE_PATH = 'single/test/image/file'
DEM_CLASSES = ['AD Alzheimer Diseases', 'AD Mild Demented', 'AD Moderate Demented',
'AD Very Mild Demented', 'CN Non Demented', 'PD Parkinson Diseases']
TUM_CLASSES = ['Glioma Tumor', 'Meningioma Tumor', 'No Tumor', 'Pituitary Tumor']
# --- MODEL ARCHITECTURE ---
class AttentionModule(nn.Module):
def __init__(self, in_channels):
super(AttentionModule, self).__init__()
self.conv1 = nn.Conv2d(in_channels, max(1, in_channels // 8), 1)
self.conv2 = nn.Conv2d(max(1, in_channels // 8), 1, 1)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
att = self.sigmoid(self.conv2(F.relu(self.conv1(x))))
return x * att, att
class MultiTaskBrainModel(nn.Module):
def __init__(self, num_dem_classes, num_tum_classes, model_type='f'):
super(MultiTaskBrainModel, self).__init__()
self.model_type = model_type
if model_type == 'f':
self.conv1 = nn.Conv2d(3, 32, 3, padding=1)
self.conv2 = nn.Conv2d(32, 64, 3, padding=1)
self.conv3 = nn.Conv2d(64, 128, 3, padding=1)
final_ch = 128
elif model_type == 'q':
self.conv1 = nn.Conv2d(3, 64, 3, padding=1)
self.bn1 = nn.BatchNorm2d(64)
self.conv2 = nn.Conv2d(64, 128, 3, padding=1)
self.bn2 = nn.BatchNorm2d(128)
self.conv3 = nn.Conv2d(128, 256, 3, padding=1)
self.bn3 = nn.BatchNorm2d(256)
self.conv4 = nn.Conv2d(256, 512, 3, padding=1)
self.bn4 = nn.BatchNorm2d(512)
final_ch = 512
self.pool = nn.MaxPool2d(2, 2)
self.relu = nn.ReLU()
self.dropout = nn.Dropout(0.5 if model_type == 'q' else 0.3)
self.edge_conv1 = nn.Conv2d(1, 16, 3, padding=1)
self.edge_conv2 = nn.Conv2d(16, 32, 3, padding=1)
self.edge_pool = nn.AdaptiveAvgPool2d(28)
self.dem_att = AttentionModule(final_ch)
self.tum_att = AttentionModule(final_ch)
if model_type == 'q':
self.feat_dim = final_ch * 14 * 14
self.edge_dim = 32 * 14 * 14
self.edge_pool = nn.AdaptiveAvgPool2d(14)
else:
self.feat_dim = final_ch * 28 * 28
self.edge_dim = 32 * 28 * 28
self.dem_fc = nn.Sequential(
nn.Linear(self.feat_dim + self.edge_dim, 512 if model_type == 'f' else 1024),
nn.ReLU(),
nn.Dropout(0.4),
nn.Linear(512 if model_type == 'f' else 1024, num_dem_classes)
)
self.tum_fc = nn.Sequential(
nn.Linear(self.feat_dim + self.edge_dim, 512 if model_type == 'f' else 1024),
nn.ReLU(),
nn.Dropout(0.4),
nn.Linear(512 if model_type == 'f' else 1024, num_tum_classes)
)
def forward(self, x, edge_x):
if self.model_type == 'f':
x = self.pool(self.relu(self.conv1(x)))
x = self.pool(self.relu(self.conv2(x)))
x = self.relu(self.conv3(x))
x = self.pool(x)
else:
x = self.pool(self.relu(self.bn1(self.conv1(x))))
x = self.pool(self.relu(self.bn2(self.conv2(x))))
x = self.pool(self.relu(self.bn3(self.conv3(x))))
x = self.relu(self.bn4(self.conv4(x)))
x = self.pool(x)
e = self.pool(self.relu(self.edge_conv1(edge_x)))
e = self.relu(self.edge_conv2(e))
e = self.edge_pool(e)
e_flat = e.view(e.size(0), -1)
d_x, d_att = self.dem_att(x)
d_flat = d_x.view(d_x.size(0), -1)
dem_out = self.dem_fc(torch.cat([d_flat, e_flat], dim=1))
t_x, t_att = self.tum_att(x)
t_flat = t_x.view(t_x.size(0), -1)
tum_out = self.tum_fc(torch.cat([t_flat, e_flat], dim=1))
return dem_out, tum_out, d_att, t_att
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
edge_transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.Grayscale(num_output_channels=1),
transforms.ToTensor()
])
def analyze_single_image(model, image_path):
print(f"\nIs being analyzed: {image_path}")
if not os.path.exists(image_path):
print("File not found.")
return
try:
raw_image = Image.open(image_path).convert('RGB')
img_tensor = transform(raw_image).unsqueeze(0).to(DEVICE)
edge_tensor = edge_transform(raw_image).unsqueeze(0).to(DEVICE)
model.eval()
with torch.no_grad():
d_out, t_out, d_att, t_att = model(img_tensor, edge_tensor)
d_prob = F.softmax(d_out, dim=1)
t_prob = F.softmax(t_out, dim=1)
d_pred = torch.argmax(d_prob).item()
t_pred = torch.argmax(t_prob).item()
print("-" * 50)
print(f"DEMENTIA: {DEM_CLASSES[d_pred]} (%{d_prob[0][d_pred] * 100:.1f})")
print(f"TUMOR : {TUM_CLASSES[t_pred]} (%{t_prob[0][t_pred] * 100:.1f})")
print("-" * 50)
d_map = d_att.detach().cpu().numpy()[0, 0]
t_map = t_att.detach().cpu().numpy()[0, 0]
d_map = cv2.resize(d_map, (224, 224))
t_map = cv2.resize(t_map, (224, 224))
plt.figure(figsize=(12, 4))
plt.subplot(1, 3, 1)
plt.imshow(raw_image)
plt.title("Original Image")
plt.axis('off')
plt.subplot(1, 3, 2)
plt.imshow(raw_image)
plt.imshow(d_map, cmap='Blues', alpha=0.5)
plt.title(f"Dementia Attention\n{DEM_CLASSES[d_pred]}")
plt.axis('off')
plt.subplot(1, 3, 3)
plt.imshow(raw_image)
plt.imshow(t_map, cmap='Reds', alpha=0.5)
plt.title(f"Tumor Attention\n{TUM_CLASSES[t_pred]}")
plt.axis('off')
plt.tight_layout()
plt.show()
except Exception as e:
print(f"Error: {e}")
import traceback
traceback.print_exc()
def evaluate_dataset_performance(model, dementia_dir, tumor_dir):
print("\n" + "=" * 60)
print("Starting the performance test")
print("=" * 60)
model.eval()
print(f"\nDementia data set: {dementia_dir}")
d_true, d_pred = [], []
if os.path.exists(dementia_dir):
for idx, cls_name in enumerate(DEM_CLASSES):
cls_path = os.path.join(dementia_dir, cls_name)
if not os.path.exists(cls_path): continue
files = [f for f in os.listdir(cls_path) if f.lower().endswith(('.jpg', '.png'))][:50]
for fname in files:
try:
img = Image.open(os.path.join(cls_path, fname)).convert('RGB')
img_t = transform(img).unsqueeze(0).to(DEVICE)
edge_t = edge_transform(img).unsqueeze(0).to(DEVICE)
with torch.no_grad():
out, _, _, _ = model(img_t, edge_t)
d_true.append(idx)
d_pred.append(torch.argmax(out, 1).item())
except:
pass
if d_true:
print(classification_report(d_true, d_pred, target_names=DEM_CLASSES, digits=3))
print(f"\nTumor dataset: {tumor_dir}")
t_true, t_pred = [], []
if os.path.exists(tumor_dir):
for idx, cls_name in enumerate(TUM_CLASSES):
cls_path = os.path.join(tumor_dir, cls_name)
if not os.path.exists(cls_path): continue
files = [f for f in os.listdir(cls_path) if f.lower().endswith(('.jpg', '.png'))][:50]
for fname in files:
try:
img = Image.open(os.path.join(cls_path, fname)).convert('RGB')
img_t = transform(img).unsqueeze(0).to(DEVICE)
edge_t = edge_transform(img).unsqueeze(0).to(DEVICE)
with torch.no_grad():
_, out, _, _ = model(img_t, edge_t)
t_true.append(idx)
t_pred.append(torch.argmax(out, 1).item())
except:
pass
if t_true:
print(classification_report(t_true, t_pred, target_names=TUM_CLASSES, digits=3))
def main():
print("System loading...")
model = MultiTaskBrainModel(len(DEM_CLASSES), len(TUM_CLASSES), model_type=MODEL_TYPE).to(DEVICE)
try:
model.load_state_dict(torch.load(MODEL_PATH, map_location=DEVICE))
print(f"Model is ready: {MODEL_PATH}")
except Exception as e:
print(f"Model loading error: {e}")
return
print("\nOPTIONS:")
print("1. Analyze the single image")
print("2. Analyze the all data set")
secim = input("Your choice (1 or 2): ")
if secim == '1':
analyze_single_image(model, TEST_IMAGE_PATH)
elif secim == '2':
evaluate_dataset_performance(model, DEMENTIA_DIR, TUMOR_DIR)
else:
print("Invalid choose.")
if __name__ == '__main__':
main()
CC-BY-NC-SA 4.0 - see LICENSE file for details.
Neurazum AI Department
Base model
Neurazum/Vbai-DPA-2.4