Upload README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
pipeline_tag: image-text-to-text
|
| 4 |
+
library_name: transformers
|
| 5 |
+
base_model:
|
| 6 |
+
- OpenGVLab/InternViT-300M-448px
|
| 7 |
+
- internlm/internlm2_5-7b-chat
|
| 8 |
+
new_version: OpenGVLab/InternVL2_5-8B
|
| 9 |
+
base_model_relation: merge
|
| 10 |
+
language:
|
| 11 |
+
- multilingual
|
| 12 |
+
tags:
|
| 13 |
+
- internvl
|
| 14 |
+
- custom_code
|
| 15 |
+
---
|
| 16 |
+
|
| 17 |
+
# InternOmni
|
| 18 |
+
|
| 19 |
+
## Quick Start
|
| 20 |
+
|
| 21 |
+
We provide an example code to run `InternOmni` using `transformers`.
|
| 22 |
+
|
| 23 |
+
> Please use transformers>=4.37.2 to ensure the model works normally.
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
### Inference with Transformers
|
| 27 |
+
|
| 28 |
+
```python
|
| 29 |
+
import numpy as np
|
| 30 |
+
import torch
|
| 31 |
+
import torchvision.transforms as T
|
| 32 |
+
from PIL import Image
|
| 33 |
+
from torchvision.transforms.functional import InterpolationMode
|
| 34 |
+
from transformers import AutoModel, AutoTokenizer
|
| 35 |
+
import librosa
|
| 36 |
+
from transformers.processing_utils import ProcessorMixin
|
| 37 |
+
import torch
|
| 38 |
+
|
| 39 |
+
class WhisperProcessor(ProcessorMixin):
|
| 40 |
+
attributes = ["feature_extractor"]
|
| 41 |
+
feature_extractor_class = "WhisperFeatureExtractor"
|
| 42 |
+
def __init__(self, feature_extractor):
|
| 43 |
+
super().__init__(feature_extractor)
|
| 44 |
+
self.current_processor = self.feature_extractor
|
| 45 |
+
self._in_target_context_manager = False
|
| 46 |
+
|
| 47 |
+
def get_decoder_prompt_ids(self, task=None, language=None, no_timestamps=True):
|
| 48 |
+
return self.tokenizer.get_decoder_prompt_ids(task=task, language=language, no_timestamps=no_timestamps)
|
| 49 |
+
|
| 50 |
+
def get_T_after_cnn(self,L_in, dilation=1):
|
| 51 |
+
for (padding, kernel_size, stride) in eval("[(1,3,1)] + [(1,3,2)] "):
|
| 52 |
+
L_out = L_in + 2 * padding - dilation * (kernel_size - 1) - 1
|
| 53 |
+
L_out = 1 + L_out // stride
|
| 54 |
+
L_in = L_out
|
| 55 |
+
return L_out
|
| 56 |
+
|
| 57 |
+
def __call__(self, *args, **kwargs):
|
| 58 |
+
if self._in_target_context_manager:
|
| 59 |
+
return self.current_processor(*args, **kwargs)
|
| 60 |
+
|
| 61 |
+
audio = kwargs.pop("audio", None)
|
| 62 |
+
sampling_rate = kwargs.pop("sampling_rate", 16000)
|
| 63 |
+
text = kwargs.pop("text", None)
|
| 64 |
+
if len(args) > 0:
|
| 65 |
+
audio = args[0]
|
| 66 |
+
args = args[1:]
|
| 67 |
+
|
| 68 |
+
if audio is None and text is None:
|
| 69 |
+
raise ValueError("You need to specify either an `audio` or `text` input to process.")
|
| 70 |
+
|
| 71 |
+
if audio is not None:
|
| 72 |
+
L = (audio.shape[0] if audio.shape[0] <= 480000 else 480000) # max_length < 30s
|
| 73 |
+
mel_len = L // 160
|
| 74 |
+
audio_len_after_cnn = self.get_T_after_cnn(mel_len)
|
| 75 |
+
audio_token_num = (audio_len_after_cnn - 2) // 2 + 1
|
| 76 |
+
inputs = self.feature_extractor(audio, *args, sampling_rate=sampling_rate, **kwargs)
|
| 77 |
+
inputs['audio_len_after_cnn'] = torch.tensor(audio_len_after_cnn, dtype=torch.long)
|
| 78 |
+
inputs['audio_token_num'] = torch.tensor(audio_token_num, dtype=torch.long)
|
| 79 |
+
if text is not None:
|
| 80 |
+
encodings = self.tokenizer(text, **kwargs)
|
| 81 |
+
|
| 82 |
+
if text is None:
|
| 83 |
+
return inputs
|
| 84 |
+
|
| 85 |
+
elif audio is None:
|
| 86 |
+
return encodings
|
| 87 |
+
else:
|
| 88 |
+
inputs["labels"] = encodings["input_ids"]
|
| 89 |
+
return inputs
|
| 90 |
+
|
| 91 |
+
def batch_decode(self, *args, **kwargs):
|
| 92 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
| 93 |
+
|
| 94 |
+
def decode(self, *args, **kwargs):
|
| 95 |
+
return self.tokenizer.decode(*args, **kwargs)
|
| 96 |
+
|
| 97 |
+
def get_prompt_ids(self, text: str, return_tensors="np"):
|
| 98 |
+
return self.tokenizer.get_prompt_ids(text, return_tensors=return_tensors)
|
| 99 |
+
|
| 100 |
+
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
| 101 |
+
IMAGENET_STD = (0.229, 0.224, 0.225)
|
| 102 |
+
|
| 103 |
+
def build_transform(input_size):
|
| 104 |
+
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
|
| 105 |
+
transform = T.Compose([
|
| 106 |
+
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
|
| 107 |
+
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
|
| 108 |
+
T.ToTensor(),
|
| 109 |
+
T.Normalize(mean=MEAN, std=STD)
|
| 110 |
+
])
|
| 111 |
+
return transform
|
| 112 |
+
|
| 113 |
+
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
|
| 114 |
+
best_ratio_diff = float('inf')
|
| 115 |
+
best_ratio = (1, 1)
|
| 116 |
+
area = width * height
|
| 117 |
+
for ratio in target_ratios:
|
| 118 |
+
target_aspect_ratio = ratio[0] / ratio[1]
|
| 119 |
+
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
|
| 120 |
+
if ratio_diff < best_ratio_diff:
|
| 121 |
+
best_ratio_diff = ratio_diff
|
| 122 |
+
best_ratio = ratio
|
| 123 |
+
elif ratio_diff == best_ratio_diff:
|
| 124 |
+
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
|
| 125 |
+
best_ratio = ratio
|
| 126 |
+
return best_ratio
|
| 127 |
+
|
| 128 |
+
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
|
| 129 |
+
orig_width, orig_height = image.size
|
| 130 |
+
aspect_ratio = orig_width / orig_height
|
| 131 |
+
|
| 132 |
+
# calculate the existing image aspect ratio
|
| 133 |
+
target_ratios = set(
|
| 134 |
+
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
|
| 135 |
+
i * j <= max_num and i * j >= min_num)
|
| 136 |
+
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
| 137 |
+
|
| 138 |
+
# find the closest aspect ratio to the target
|
| 139 |
+
target_aspect_ratio = find_closest_aspect_ratio(
|
| 140 |
+
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
|
| 141 |
+
|
| 142 |
+
# calculate the target width and height
|
| 143 |
+
target_width = image_size * target_aspect_ratio[0]
|
| 144 |
+
target_height = image_size * target_aspect_ratio[1]
|
| 145 |
+
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
| 146 |
+
|
| 147 |
+
# resize the image
|
| 148 |
+
resized_img = image.resize((target_width, target_height))
|
| 149 |
+
processed_images = []
|
| 150 |
+
for i in range(blocks):
|
| 151 |
+
box = (
|
| 152 |
+
(i % (target_width // image_size)) * image_size,
|
| 153 |
+
(i // (target_width // image_size)) * image_size,
|
| 154 |
+
((i % (target_width // image_size)) + 1) * image_size,
|
| 155 |
+
((i // (target_width // image_size)) + 1) * image_size
|
| 156 |
+
)
|
| 157 |
+
# split the image
|
| 158 |
+
split_img = resized_img.crop(box)
|
| 159 |
+
processed_images.append(split_img)
|
| 160 |
+
assert len(processed_images) == blocks
|
| 161 |
+
if use_thumbnail and len(processed_images) != 1:
|
| 162 |
+
thumbnail_img = image.resize((image_size, image_size))
|
| 163 |
+
processed_images.append(thumbnail_img)
|
| 164 |
+
return processed_images
|
| 165 |
+
|
| 166 |
+
def load_image(image_file, input_size=448, max_num=12):
|
| 167 |
+
image = Image.open(image_file).convert('RGB')
|
| 168 |
+
transform = build_transform(input_size=input_size)
|
| 169 |
+
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
|
| 170 |
+
pixel_values = [transform(image) for image in images]
|
| 171 |
+
pixel_values = torch.stack(pixel_values)
|
| 172 |
+
return pixel_values
|
| 173 |
+
|
| 174 |
+
def load_audio(audio_file, audio_processor):
|
| 175 |
+
audio_values, _ = librosa.load(audio_file, sr=16000) # sample rate should be 16000
|
| 176 |
+
|
| 177 |
+
audio_process_values = audio_processor(audio_values, sampling_rate=16000, return_tensors="pt")
|
| 178 |
+
input_features = audio_process_values['input_features']
|
| 179 |
+
audio_len_after_cnn = audio_process_values['audio_len_after_cnn']
|
| 180 |
+
audio_token_num = audio_process_values['audio_token_num']
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
audio_input = {'audio_values': input_features,
|
| 184 |
+
'audio_len_after_cnn': audio_len_after_cnn,
|
| 185 |
+
'audio_token_num': audio_token_num,
|
| 186 |
+
}
|
| 187 |
+
return audio_input
|
| 188 |
+
|
| 189 |
+
path = 'OpenGVLab/InternOmni'
|
| 190 |
+
model = AutoModel.from_pretrained(
|
| 191 |
+
path,
|
| 192 |
+
torch_dtype=torch.bfloat16,
|
| 193 |
+
low_cpu_mem_usage=True,
|
| 194 |
+
trust_remote_code=True).eval().cuda()
|
| 195 |
+
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
|
| 196 |
+
audio_processor = WhisperProcessor.from_pretrained(path)
|
| 197 |
+
# set the max number of tiles in `max_num`
|
| 198 |
+
pixel_values = load_image('./1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
| 199 |
+
audio = load_audio('./1.wav', audio_processor)
|
| 200 |
+
generation_config = dict(max_new_tokens=1024, do_sample=True)
|
| 201 |
+
|
| 202 |
+
# question = '请将这段语音识别成文字,并以文字形式展示出来。'
|
| 203 |
+
response = model.Audio_chat(tokenizer=tokenizer, pixel_values=pixel_values,audio=audio, question=None, generation_config)
|
| 204 |
+
print(f'Assistant: {response}')
|
| 205 |
+
|
| 206 |
+
```
|
| 207 |
+
|
| 208 |
+
## License
|
| 209 |
+
|
| 210 |
+
This project is released under the MIT License. This project uses the pre-trained internVL2_8b as a component, which is licensed under the Apache License 2.0.
|
| 211 |
+
|
| 212 |
+
## Citation
|
| 213 |
+
|
| 214 |
+
If you find this project useful in your research, please consider citing:
|
| 215 |
+
|
| 216 |
+
```BibTeX
|
| 217 |
+
@article{chen2024expanding,
|
| 218 |
+
title={Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling},
|
| 219 |
+
author={Chen, Zhe and Wang, Weiyun and Cao, Yue and Liu, Yangzhou and Gao, Zhangwei and Cui, Erfei and Zhu, Jinguo and Ye, Shenglong and Tian, Hao and Liu, Zhaoyang and others},
|
| 220 |
+
journal={arXiv preprint arXiv:2412.05271},
|
| 221 |
+
year={2024}
|
| 222 |
+
}
|
| 223 |
+
@article{gao2024mini,
|
| 224 |
+
title={Mini-internvl: A flexible-transfer pocket multimodal model with 5\% parameters and 90\% performance},
|
| 225 |
+
author={Gao, Zhangwei and Chen, Zhe and Cui, Erfei and Ren, Yiming and Wang, Weiyun and Zhu, Jinguo and Tian, Hao and Ye, Shenglong and He, Junjun and Zhu, Xizhou and others},
|
| 226 |
+
journal={arXiv preprint arXiv:2410.16261},
|
| 227 |
+
year={2024}
|
| 228 |
+
}
|
| 229 |
+
@article{chen2024far,
|
| 230 |
+
title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
|
| 231 |
+
author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
|
| 232 |
+
journal={arXiv preprint arXiv:2404.16821},
|
| 233 |
+
year={2024}
|
| 234 |
+
}
|
| 235 |
+
@inproceedings{chen2024internvl,
|
| 236 |
+
title={Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks},
|
| 237 |
+
author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and others},
|
| 238 |
+
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
|
| 239 |
+
pages={24185--24198},
|
| 240 |
+
year={2024}
|
| 241 |
+
}
|
| 242 |
+
```
|