MOSS-TTS-Local-Transformer / modeling_moss_tts.py
schwarztgyt's picture
Upload voiceplus_qwen3_1.7B_tp8_rvq32_all_data_tacv3_max_lr_2e-4_min_2e-4_enhanced_lm_head_add_layer_norm_wd_0.1_from_pretrained_seqlen_14336_decay iter_0015000 model snapshot
a724b39
raw
history blame
33.6 kB
import os
import copy
import torch
import torch.nn as nn
import logging
import sys
from tqdm import tqdm
from dataclasses import dataclass
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS
from transformers.utils import ModelOutput
from transformers.cache_utils import Cache
from typing import Optional, List, Tuple, Union
from transformers.loss.loss_utils import ForCausalLMLoss
from transformers import PreTrainedModel, GenerationMixin
from transformers.generation.streamers import BaseStreamer
from transformers.models.qwen3.modeling_qwen3 import Qwen3Model, Qwen3Attention, eager_attention_forward
from transformers.modeling_outputs import BaseModelOutputWithPast
from transformers.models.qwen3.configuration_qwen3 import Qwen3Config
from transformers.generation.configuration_utils import GenerationConfig
from transformers.generation.stopping_criteria import StoppingCriteriaList
from transformers.generation.logits_process import LogitsProcessorList, RepetitionPenaltyLogitsProcessor, TopKLogitsWarper, TopPLogitsWarper, TemperatureLogitsWarper
from transformers.masking_utils import create_causal_mask
from .inference_utils import find_last_equal_C
from .configuration_moss_tts import MossTTSDelayConfig
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
class MossTTSRMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def forward(self, x: torch.Tensor) -> torch.Tensor:
# x: [..., dim]
norm = x.pow(2).mean(dim=-1, keepdim=True)
x = x * torch.rsqrt(norm + self.eps)
return x * self.weight
class MossTTSMLP(nn.Module):
"""
HF-style MLP adapter equivalent to Megatron's SwiGLU FFN:
in: input_size
mid: ffn_hidden_size
out: output_size
Computes:
y = down( silu(gate(x)) * up(x) )
Optionally includes a pre-norm on input (common in Megatron blocks).
"""
def __init__(
self,
input_size: int,
ffn_hidden_size: int,
output_size: int,
bias: bool = False,
prenorm: bool = False,
norm_eps: float = 1e-6,
use_rmsnorm: bool = True,
):
super().__init__()
self.prenorm = prenorm
if prenorm:
if use_rmsnorm:
self.norm = MossTTSRMSNorm(input_size, eps=norm_eps)
else:
self.norm = nn.LayerNorm(input_size, eps=norm_eps)
else:
self.norm = None
# SwiGLU uses two projections to ffn_hidden_size: gate and up
self.gate_proj = nn.Linear(input_size, ffn_hidden_size, bias=bias)
self.up_proj = nn.Linear(input_size, ffn_hidden_size, bias=bias)
# down projection to output_size (note: output can differ from input)
self.down_proj = nn.Linear(ffn_hidden_size, output_size, bias=bias)
def forward(self, x: torch.Tensor) -> torch.Tensor:
if self.norm is not None:
x = self.norm(x)
gate = self.gate_proj(x)
up = self.up_proj(x)
h = F.silu(gate) * up
y = self.down_proj(h)
return y
def moss_tts_masked_embedding(embedding: nn.Embedding,
input_ids: torch.LongTensor,
ignore_index: int = -100) -> torch.Tensor:
"""
对 input_ids 中 != ignore_index 的位置做 embedding,ignore_index 的位置输出全 0 向量。
Args:
embedding: 一个 nn.Embedding 层
input_ids: 任意形状的 LongTensor,里面允许出现 ignore_index
ignore_index: 需要被忽略的位置标记(默认 -100)
Returns:
embeddings: 形状为 (*input_ids.shape, embedding.embedding_dim) 的张量
"""
# mask: True 表示需要正常 embedding,False 表示输出 0
mask = (input_ids != ignore_index) # shape: [...]
# 为了避免 -100 这种非法 index 传进 embedding,这里先临时替换掉
safe_ids = input_ids.clone()
safe_ids[~mask] = 0
# 正常过 embedding
out = embedding(safe_ids) # shape: [..., dim]
# 把 ignore_index 对应的位置置 0
out[~mask] = 0.0
return out
class MossTTSAttentionWithoutPositionalEmbedding(Qwen3Attention):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: MossTTSDelayConfig, layer_idx: int):
super().__init__(config, layer_idx)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_norm(self.q_proj(hidden_states).view(hidden_shape)).transpose(1, 2)
key_states = self.k_norm(self.k_proj(hidden_states).view(hidden_shape)).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
assert past_key_value is None
attention_interface = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
print(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
is_causal=True,
attention_mask=None,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
sliding_window=self.sliding_window, # diff with Llama
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
class MossTTSLocalTransformer(Qwen3Model):
def __init__(self, config: MossTTSDelayConfig):
super().__init__(config)
del self.rotary_emb
del self.embed_tokens
for layer_idx in range(config.num_hidden_layers):
self.layers[layer_idx].self_attn = MossTTSAttentionWithoutPositionalEmbedding(config, layer_idx)
self.post_init()
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**flash_attn_kwargs,
) -> BaseModelOutputWithPast:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
use_cache = False
assert not use_cache
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
print(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
# TODO (joao): remove this exception in v4.56 -- it exists for users that try to pass a legacy cache
if not isinstance(past_key_values, (type(None), Cache)):
raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
assert False
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
# causal_mask = self._update_causal_mask( # ???
# attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
# )
mask_kwargs = {
"config": self.config,
"input_embeds": inputs_embeds,
"attention_mask": attention_mask,
"cache_position": cache_position,
"past_key_values": past_key_values,
"position_ids": position_ids,
}
causal_mask = create_causal_mask(**mask_kwargs),
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
# position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=None,
past_key_value=None,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=None,
position_embeddings=None,
**flash_attn_kwargs,
)
hidden_states = layer_outputs
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
@dataclass
class MosiTTSOutputWithPast(ModelOutput):
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
loss_all: Optional[Tuple[torch.FloatTensor]] = None
logits_all: Optional[Tuple[torch.FloatTensor]] = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class MossTTSGenerateDecoderOnlyOutput(ModelOutput):
sequences: torch.LongTensor = None
scores: Optional[Tuple[torch.FloatTensor]] = None
logits: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None
class CustomMixin(GenerationMixin): # TODO 待检查正确性
def _sample(
self,
input_ids: torch.LongTensor, # (B, T, 1+Nq)
logits_processor: LogitsProcessorList,
stopping_criteria: StoppingCriteriaList,
generation_config: GenerationConfig,
synced_gpus: bool,
streamer: Optional["BaseStreamer"] = None,
**model_kwargs,
) -> Union[MossTTSGenerateDecoderOnlyOutput, torch.LongTensor]:
# 提取配置参数
# assert False
speech_pad_idx = self.config.audio_pad_code
device = input_ids.device
eos_token_id = generation_config.eos_token_id
output_attentions = generation_config.output_attentions
output_hidden_states = generation_config.output_hidden_states
output_scores = generation_config.output_scores
output_logits = generation_config.output_logits
return_dict_in_generate = generation_config.return_dict_in_generate
max_length = generation_config.max_length
has_eos_stopping_criteria = any(hasattr(criteria, "eos_token_id") for criteria in stopping_criteria)
do_sample = generation_config.do_sample
# 初始化输出元组
scores = () if (return_dict_in_generate and output_scores) else None
raw_logits = () if (return_dict_in_generate and output_logits) else None
decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None
# 初始化跟踪变量
batch_size, cur_len, channels = input_ids.shape # channels = 8
input_ids_length = cur_len
# assert batch_size == 1
this_peer_finished = False
unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device) # (B, )
base_length = input_ids.shape[1]
model_kwargs = self._get_initial_cache_position(cur_len, input_ids.device, model_kwargs)
# model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs)
# 定义logits processor
if generation_config.do_samples is not None:
do_samples = generation_config.do_samples
realprocessor = [LogitsProcessorList() for _ in range(channels)]
for i, layer_config in enumerate(generation_config.layers):
if not do_samples[i]:
continue
if layer_config.get("repetition_penalty") is not None and i != 0: # 文本层不用重复惩罚
realprocessor[i].append(RepetitionPenaltyLogitsProcessor(penalty=layer_config.get("repetition_penalty")))
if layer_config.get("temperature") is not None:
realprocessor[i].append(TemperatureLogitsWarper(temperature=layer_config.get("temperature")))
if layer_config.get("top_k") is not None:
realprocessor[i].append(TopKLogitsWarper(top_k=layer_config.get("top_k")))
if layer_config.get("top_p") is not None:
realprocessor[i].append(TopPLogitsWarper(top_p=layer_config.get("top_p")))
else:
assert False
do_samples = [do_sample for _ in range(channels)]
realprocessor = [logits_processor for _ in range(channels)]
pbar = tqdm()
while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device):
# 准备模型输入
pbar.update()
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
model_inputs.update({"output_attentions": output_attentions} if output_attentions else {})
model_inputs.update({"output_hidden_states": output_hidden_states} if output_hidden_states else {})
# 前向传递
outputs = self(**model_inputs, n_vq_for_inference=generation_config.n_vq_for_inference, return_dict=True, output_hidden_states=True)
model_kwargs = self._update_model_kwargs_for_generation(outputs, model_kwargs)
if synced_gpus and this_peer_finished:
continue
global_trm_output_hidden_states = outputs.hidden_states[-1][:, -1, :] # (B, D)
dtype = global_trm_output_hidden_states.dtype
local_trm_dim = self.local_transformer_config.hidden_size
local_transformer_inputs = torch.zeros(batch_size, 0, local_trm_dim).to(device).to(dtype) # (B, 0 <= t <= Nq, D), 维护当前 local trm 的输入
current_local_transformer_input = self.speech_embedding_to_local_mlp(global_trm_output_hidden_states) # (B, D) 维护当前 timestamp 的 local trm 的输入,
next_tokens = [] # 1+Nq * (B, )
# n_vq_for_inference = int(os.environ['N_VQ_FOR_INFERENCE'])
n_vq_for_inference = generation_config.n_vq_for_inference
for layer_index in range(min(channels, 1 + n_vq_for_inference)):
local_transformer_inputs = torch.cat([local_transformer_inputs, current_local_transformer_input.unsqueeze(1)], dim=1) # (B, t, D)
local_transformer_outputs = self.local_transformer(
input_ids=None,
attention_mask=None,
inputs_embeds=local_transformer_inputs # (B, t=1+Nq, D)
)[0] # (B, t=1+Nq, D)
local_transformer_outputs = self.layer_norm_before_lm_heads[layer_index](
self.local_to_speech_embedding_mlps[layer_index](local_transformer_outputs) # (B, t=1+Nq, D)
) # (B, t=1+Nq, D)
next_token_logit = self.lm_heads[layer_index](local_transformer_outputs[:, -1, :]) # (B, V)
if layer_index != 0:
next_token_logit[:, speech_pad_idx] = -torch.inf
next_token_score = realprocessor[layer_index](input_ids[..., layer_index], next_token_logit) # (B, V)
if do_samples[layer_index]:
channel_ntk = torch.multinomial(nn.functional.softmax(next_token_score, dim=-1), num_samples=1).squeeze(1) # (B, )
else:
channel_ntk = torch.argmax(next_token_score, dim=-1) # (B, )
next_tokens.append(channel_ntk) # 1+Nq * (B, )
current_local_transformer_input = self.model.embedding_list[layer_index](channel_ntk) # (B, D)
current_local_transformer_input = self.speech_embedding_to_local_mlp(current_local_transformer_input) # (B, D)
for layer_index in range(1 + n_vq_for_inference, channels):
next_tokens.append(torch.zeros((batch_size, )).to(torch.int).to(device))
next_tokens = torch.stack(next_tokens, dim=-1) # (B, 1+Nq)
if has_eos_stopping_criteria:
for i in range(channels):
pddp = eos_token_id if i == 0 else speech_pad_idx
next_tokens[:, i] = next_tokens[:, i] * unfinished_sequences + pddp * (1 - unfinished_sequences)
input_ids = torch.cat([input_ids, next_tokens[:, None, :]], dim=1) # (B, T, 1+Nq)
if streamer is not None:
streamer.put(next_tokens[:, 0].cpu())
stopping = stopping_criteria(input_ids[..., 0], scores)
# stopping = stopping_criteria(input_ids[..., 0], scores)
unfinished_sequences = unfinished_sequences & ~stopping
this_peer_finished = unfinished_sequences.max() == 0
if return_dict_in_generate:
if output_scores:
assert False
scores += (next_token_scores,)
if output_logits:
assert False
raw_logits += (next_token_logits,)
if output_attentions:
decoder_attentions += (outputs.attentions,)
if output_hidden_states:
decoder_hidden_states += (outputs.hidden_states,)
cur_len += 1
del outputs
if streamer is not None:
streamer.end()
if return_dict_in_generate:
return MossTTSGenerateDecoderOnlyOutput(
sequences=input_ids,
scores=scores,
logits=raw_logits,
attentions=decoder_attentions,
hidden_states=decoder_hidden_states,
past_key_values=model_kwargs.get("past_key_values"),
)
else:
start_indices = find_last_equal_C(input_ids[..., 0], self.config.audio_start_token_id)
start_lengths = input_ids_length - start_indices - 1 # voice clone 下是 0,续写情况下是 prompt 音频的长度,不包括 audio_start_token
output = []
for start_idx, start_length, cur_generation_ids in zip(start_indices, start_lengths, input_ids):
output.append((start_length, cur_generation_ids[start_idx:]))
return output
class MosiTTSPretrainedModel(PreTrainedModel):
config_class = MossTTSDelayConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["Qwen2DecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_flex_attn = True
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = True
_supports_attention_backend = True
class MosiTTSModel(MosiTTSPretrainedModel):
def __init__(self, config: MossTTSDelayConfig):
super().__init__(config)
self.text_pad_idx = config.pad_token_id
self.speech_pad_idx = config.audio_pad_code
self.embedding_list = nn.ModuleList([])
self.embedding_list.append(nn.Embedding(config.vocab_size, config.hidden_size, self.text_pad_idx))
self.channels = 1 + config.n_vq
for _ in range(1, self.channels):
self.embedding_list.append(nn.Embedding(config.audio_vocab_size + 1, config.hidden_size, self.speech_pad_idx))
self.language_model = Qwen3Model(config.language_config)
self.post_init()
def get_input_embeddings(self):
return self.embedding_list[0]
def set_input_embeddings(self, value: nn.Embedding):
self.embedding_list[0] = value
def _prepare_multi_modal_inputs(self, input_ids: torch.LongTensor, n_vq_for_inference: int, **kwargs) -> torch.FloatTensor:
"""
Prepares multi-modal embeddings from input_ids of shape (batch_size, channels, sequence_length).
For channel 0: text + speech tokens, for channels 1 to channels-1: speech tokens padded with speech_pad_token.
"""
batch_size, seq_length, channels = input_ids.shape
if channels != self.channels:
raise ValueError(f"Expected {self.config.channels} channels, got {channels}")
inputs_embeds = torch.zeros(batch_size, seq_length, self.config.hidden_size, device=input_ids.device, dtype=self.embedding_list[0].weight.dtype)
for i in range(min(channels, 1 + n_vq_for_inference)):
embed_layer = self.embedding_list[i]
channel_input = input_ids[...,i]
inputs_embeds += embed_layer(channel_input)
return inputs_embeds # (B, T, D)
def forward(
self,
input_ids: torch.LongTensor = None, # Shape: (batch_size, channels, sequence_length)
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Union[Tuple, BaseModelOutputWithPast]:
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if input_ids is not None:
inputs_embeds = self._prepare_multi_modal_inputs(input_ids, **kwargs) # (B, T, D)
outputs = self.language_model(
input_ids=None,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
return outputs
class MossTTSDelayModel(MosiTTSPretrainedModel, CustomMixin):
_tied_weights_keys = []
_tp_plan = {"lm_head": "colwise_rep"}
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
def __init__(self, config: MossTTSDelayConfig):
super().__init__(config)
self.model = MosiTTSModel(config)
self.channels = 1 + config.n_vq
self.weights = [1 for _ in range(self.channels)]
self._tied_weights_keys = [f"lm_heads.{i}.weight" for i in range(self.channels)]
self.vocab_size = config.vocab_size
local_transformer_config = copy.deepcopy(config.language_config)
local_transformer_config.num_hidden_layers = config.local_num_layers
local_transformer_config.hidden_size = config.local_hidden_size
local_transformer_config.intermediate_size = config.local_ffn_hidden_size
self.local_transformer_config = local_transformer_config
self.local_transformer = MossTTSLocalTransformer(self.local_transformer_config)
self.speech_embedding_to_local_mlp = MossTTSMLP(
input_size=config.hidden_size,
ffn_hidden_size=config.additional_mlp_ffn_hidden_size,
output_size=config.local_hidden_size
)
self.local_to_speech_embedding_mlps = nn.ModuleList([
MossTTSMLP(
input_size=config.local_hidden_size,
ffn_hidden_size=config.additional_mlp_ffn_hidden_size,
output_size=config.hidden_size
)
for _ in range(self.channels)
])
self.layer_norm_before_lm_heads = nn.ModuleList([
MossTTSRMSNorm(config.hidden_size)
for _ in range(self.channels)
])
self.lm_heads = nn.ModuleList([])
self.lm_heads.append(nn.Linear(config.hidden_size, config.vocab_size, bias=False))
for _ in range(1, self.channels):
self.lm_heads.append(nn.Linear(config.hidden_size, 1 + config.audio_vocab_size, bias=False))
self.post_init()
def get_input_embeddings(self):
return self.model.embedding_list[0]
def can_generate(self):
return True
# def tie_weights(self):
# ...
# for i in range(self.config.channels):
# self._tie_or_clone_weights(self.lm_heads[i], self.model.embedding_list[i])
def set_input_embeddings(self, value):
self.model.embedding_list[0] = value
def get_output_embeddings(self):
return self.lm_heads[0]
def set_output_embeddings(self, new_embeddings):
self.lm_heads[0] = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def set_weights(self, weights):
self.weights = weights
def _prepare_shifted_audio_inputs(self, label_ids): # (B, T, 1 + Nq) 可能有 -100
text_and_audio_label_embed_list = [] # Nq * (1, T, B, D)
for i in range(0, self.local_transformer_config.channels - 1):
text_and_audio_label_embed_list.append(
moss_tts_masked_embedding(self.model.embedding_list[i], label_ids[:, :, i]).unsqueeze(0).transpose(1, 2) # (B, T) -> (B, T, D) -> (1, B, T, D) -> (1, T, B, D)
) # (1, T, B, D)
audio_label_embeds = torch.stack(text_and_audio_label_embed_list, dim=0) # (Nq, 1, T, B, D)
audio_label_embeds = audio_label_embeds.contiguous()[:, 0, :, :, :].transpose(1, 2) # (Nq, B, T, D)
return audio_label_embeds # (Nq, B, T, D)
def forward(
self,
input_ids: torch.LongTensor = None, # (B, T, 1 + Nq)
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None, # (B, T, 1 + Nq), TODO labels 为 input_ids shift 一位的结果
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Union[Tuple, MosiTTSOutputWithPast]:
device = input_ids.device if not input_ids is None else inputs_embeds.device
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids, # (B, T, 1 + Nq)
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
**kwargs,
)
if labels is not None:
local_transformer_inputs_from_global = outputs[0].unsqueeze(0) # (1, B, T, D)
D_global= local_transformer_inputs_from_global.shape[-1]
local_transformer_inputs_from_speech_embeddings = self._prepare_shifted_audio_inputs(labels) # (B, T, 1 + Nq) -> (Nq, B, T, D)
local_transformer_input_hidden_states = torch.cat([local_transformer_inputs_from_global, local_transformer_inputs_from_speech_embeddings], dim=0).contiguous() # (1 + Nq, B, T, D)
local_transformer_input_hidden_states = self.speech_embedding_to_local_mlp(local_transformer_input_hidden_states) # (1 + Nq, B, T, D)
N_channels, B, T, D_local = local_transformer_input_hidden_states.shape
local_transformer_input_hidden_states = local_transformer_input_hidden_states.permute(1, 2, 0, 3) # (B, T, 1 + Nq, D)
local_transformer_input_hidden_states = local_transformer_input_hidden_states.reshape(B * T, N_channels, D_local) # (batch_size=B * T, time=1+Nq, D)
local_transformer_output_hidden_states = self.local_transformer( # TODO 没有开位置编码
input_ids=None,
attention_mask=None,
inputs_embeds=local_transformer_input_hidden_states # (batch_size=B * T, time=1+Nq, D)
)[0] # (batch_size=B * T, time=1+Nq, D)
after_lm_head_mlp_hidden_states = [] # Nq+1 * (B*T, D) TODO ???
for i in range(self.channels):
after_lm_head_mlp_hidden_states.append(
self.layer_norm_before_lm_heads[i](
self.local_to_speech_embedding_mlps[i](
local_transformer_output_hidden_states[:, i, :] # (B*T, D)
)
)
) # Nq+1 * (B*T, D)
after_lm_head_mlp_hidden_states = torch.stack(after_lm_head_mlp_hidden_states, dim=0) # (1 + Nq, B*T, D)
after_lm_head_mlp_hidden_states = after_lm_head_mlp_hidden_states.reshape(N_channels, B, T, D_global) # (1 + Nq, B, T, D)
logits_all = [lm_head(h_i) for lm_head, h_i in zip(self.lm_heads, after_lm_head_mlp_hidden_states)] # 1+Nq * (B, T, V)
loss_all = torch.empty(self.channels, device=device) # (1 + Nq)
for i in range(self.channels):
vocab_size = self.config.vocab_size if i == 0 else self.config.audio_vocab_size
loss_all[i] = ForCausalLMLoss(logits_all[i], labels[..., i], vocab_size, shift_labels=labels[..., i]) # (B, T, V), (B, T) => (1, )
normalized_weights = [weight_i / sum(self.weights) for weight_i in self.weights] # (1+Nq, )
total_loss = 0
for w, loss in zip(normalized_weights, loss_all):
total_loss += w * loss
else:
total_loss = None
loss_all = None,
logits_all = [None]
assert return_dict
if not return_dict:
output = (logits_all,) + outputs[1:]
return (total_loss, loss_all, ) + output if loss is not None else output
return MosiTTSOutputWithPast(
loss=total_loss,
logits=logits_all[0],
loss_all=loss_all,
logits_all=logits_all, # 1+Nq * (B, T, V)
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states, # L * (B, T, D)
attentions=outputs.attentions,
)