--- language: - fr license: apache-2.0 base_model: Alibaba-NLP/gte-modernbert-base tags: - token-classification - ner - pii - pii-detection - de-identification - privacy - healthcare - medical - clinical - phi - french - pytorch - transformers - openmed pipeline_tag: token-classification library_name: transformers metrics: - f1 - precision - recall model-index: - name: OpenMed-PII-French-GTEMed-Base-149M-v1 results: - task: type: token-classification name: Named Entity Recognition dataset: name: AI4Privacy (French subset) type: ai4privacy/pii-masking-400k split: test metrics: - type: f1 value: 0.9639 name: F1 (micro) - type: precision value: 0.9617 name: Precision - type: recall value: 0.9661 name: Recall widget: - text: "Dr. Jean Dupont (NSS: 1 85 12 75 108 123 45) peut être contacté à jean.dupont@hopital.fr ou au 06 12 34 56 78. Il habite au 15 Rue de la Paix, 75002 Paris." example_title: Clinical Note with PII (French) --- # OpenMed-PII-French-GTEMed-Base-149M-v1 **French PII Detection Model** | 149M Parameters | Open Source [![F1 Score](https://img.shields.io/badge/F1-96.39%25-brightgreen)]() [![Precision](https://img.shields.io/badge/Precision-96.17%25-blue)]() [![Recall](https://img.shields.io/badge/Recall-96.61%25-orange)]() ## Model Description **OpenMed-PII-French-GTEMed-Base-149M-v1** is a transformer-based token classification model fine-tuned for **Personally Identifiable Information (PII) detection in French text**. This model identifies and classifies **54 types of sensitive information** including names, addresses, social security numbers, medical record numbers, and more. ### Key Features - **French-Optimized**: Specifically trained on French text for optimal performance - **High Accuracy**: Achieves strong F1 scores across diverse PII categories - **Comprehensive Coverage**: Detects 55+ entity types spanning personal, financial, medical, and contact information - **Privacy-Focused**: Designed for de-identification and compliance with GDPR and other privacy regulations - **Production-Ready**: Optimized for real-world text processing pipelines ## Performance Evaluated on the French subset of AI4Privacy dataset: | Metric | Score | |:---|:---:| | **Micro F1** | **0.9639** | | Precision | 0.9617 | | Recall | 0.9661 | | Macro F1 | 0.9547 | | Weighted F1 | 0.9639 | | Accuracy | 0.9952 | ### Top 10 French PII Models | Rank | Model | F1 | Precision | Recall | |:---:|:---|:---:|:---:|:---:| | 1 | [OpenMed-PII-French-SuperClinical-Large-434M-v1](https://huggingface.co/OpenMed/OpenMed-PII-French-SuperClinical-Large-434M-v1) | 0.9797 | 0.9790 | 0.9804 | | 2 | [OpenMed-PII-French-EuroMed-210M-v1](https://huggingface.co/OpenMed/OpenMed-PII-French-EuroMed-210M-v1) | 0.9762 | 0.9747 | 0.9777 | | 3 | [OpenMed-PII-French-ClinicalBGE-568M-v1](https://huggingface.co/OpenMed/OpenMed-PII-French-ClinicalBGE-568M-v1) | 0.9733 | 0.9718 | 0.9748 | | 4 | [OpenMed-PII-French-BigMed-Large-560M-v1](https://huggingface.co/OpenMed/OpenMed-PII-French-BigMed-Large-560M-v1) | 0.9733 | 0.9716 | 0.9749 | | 5 | [OpenMed-PII-French-SnowflakeMed-Large-568M-v1](https://huggingface.co/OpenMed/OpenMed-PII-French-SnowflakeMed-Large-568M-v1) | 0.9728 | 0.9711 | 0.9745 | | 6 | [OpenMed-PII-French-SuperMedical-Large-355M-v1](https://huggingface.co/OpenMed/OpenMed-PII-French-SuperMedical-Large-355M-v1) | 0.9728 | 0.9712 | 0.9744 | | 7 | [OpenMed-PII-French-NomicMed-Large-395M-v1](https://huggingface.co/OpenMed/OpenMed-PII-French-NomicMed-Large-395M-v1) | 0.9722 | 0.9704 | 0.9740 | | 8 | [OpenMed-PII-French-mClinicalE5-Large-560M-v1](https://huggingface.co/OpenMed/OpenMed-PII-French-mClinicalE5-Large-560M-v1) | 0.9713 | 0.9697 | 0.9729 | | 9 | [OpenMed-PII-French-mSuperClinical-Base-279M-v1](https://huggingface.co/OpenMed/OpenMed-PII-French-mSuperClinical-Base-279M-v1) | 0.9674 | 0.9662 | 0.9687 | | 10 | [OpenMed-PII-French-ClinicalBGE-Large-335M-v1](https://huggingface.co/OpenMed/OpenMed-PII-French-ClinicalBGE-Large-335M-v1) | 0.9668 | 0.9644 | 0.9692 | ## Supported Entity Types This model detects **54 PII entity types** organized into categories:
Identifiers (22 types) | Entity | Description | |:---|:---| | `ACCOUNTNAME` | Accountname | | `BANKACCOUNT` | Bankaccount | | `BIC` | Bic | | `BITCOINADDRESS` | Bitcoinaddress | | `CREDITCARD` | Creditcard | | `CREDITCARDISSUER` | Creditcardissuer | | `CVV` | Cvv | | `ETHEREUMADDRESS` | Ethereumaddress | | `IBAN` | Iban | | `IMEI` | Imei | | ... | *and 12 more* |
Personal Info (11 types) | Entity | Description | |:---|:---| | `AGE` | Age | | `DATEOFBIRTH` | Dateofbirth | | `EYECOLOR` | Eyecolor | | `FIRSTNAME` | Firstname | | `GENDER` | Gender | | `HEIGHT` | Height | | `LASTNAME` | Lastname | | `MIDDLENAME` | Middlename | | `OCCUPATION` | Occupation | | `PREFIX` | Prefix | | ... | *and 1 more* |
Contact Info (2 types) | Entity | Description | |:---|:---| | `EMAIL` | Email | | `PHONE` | Phone |
Location (9 types) | Entity | Description | |:---|:---| | `BUILDINGNUMBER` | Buildingnumber | | `CITY` | City | | `COUNTY` | County | | `GPSCOORDINATES` | Gpscoordinates | | `ORDINALDIRECTION` | Ordinaldirection | | `SECONDARYADDRESS` | Secondaryaddress | | `STATE` | State | | `STREET` | Street | | `ZIPCODE` | Zipcode |
Organization (3 types) | Entity | Description | |:---|:---| | `JOBDEPARTMENT` | Jobdepartment | | `JOBTITLE` | Jobtitle | | `ORGANIZATION` | Organization |
Financial (5 types) | Entity | Description | |:---|:---| | `AMOUNT` | Amount | | `CURRENCY` | Currency | | `CURRENCYCODE` | Currencycode | | `CURRENCYNAME` | Currencyname | | `CURRENCYSYMBOL` | Currencysymbol |
Temporal (2 types) | Entity | Description | |:---|:---| | `DATE` | Date | | `TIME` | Time |
## Usage ### Quick Start ```python from transformers import pipeline # Load the PII detection pipeline ner = pipeline("ner", model="OpenMed/OpenMed-PII-French-GTEMed-Base-149M-v1", aggregation_strategy="simple") text = """ Patient Jean Martin (né le 15/03/1985, NSS: 1 85 03 75 108 234 67) a été vu aujourd'hui. Contact: jean.martin@email.fr, Téléphone: 06 12 34 56 78. Adresse: 123 Avenue des Champs-Élysées, 75008 Paris. """ entities = ner(text) for entity in entities: print(f"{entity['entity_group']}: {entity['word']} (score: {entity['score']:.3f})") ``` ### De-identification Example ```python def redact_pii(text, entities, placeholder='[REDACTED]'): """Replace detected PII with placeholders.""" # Sort entities by start position (descending) to preserve offsets sorted_entities = sorted(entities, key=lambda x: x['start'], reverse=True) redacted = text for ent in sorted_entities: redacted = redacted[:ent['start']] + f"[{ent['entity_group']}]" + redacted[ent['end']:] return redacted # Apply de-identification redacted_text = redact_pii(text, entities) print(redacted_text) ``` ### Batch Processing ```python from transformers import AutoModelForTokenClassification, AutoTokenizer import torch model_name = "OpenMed/OpenMed-PII-French-GTEMed-Base-149M-v1" model = AutoModelForTokenClassification.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) texts = [ "Patient Jean Martin (né le 15/03/1985, NSS: 1 85 03 75 108 234 67) a été vu aujourd'hui.", "Contact: jean.martin@email.fr, Téléphone: 06 12 34 56 78.", ] inputs = tokenizer(texts, return_tensors='pt', padding=True, truncation=True) with torch.no_grad(): outputs = model(**inputs) predictions = torch.argmax(outputs.logits, dim=-1) ``` ## Training Details ### Dataset - **Source**: [AI4Privacy PII Masking 400k](https://huggingface.co/datasets/ai4privacy/pii-masking-400k) (French subset) - **Format**: BIO-tagged token classification - **Labels**: 109 total (54 entity types × 2 BIO tags + O) ### Training Configuration - **Max Sequence Length**: 512 tokens - **Epochs**: 3 - **Framework**: Hugging Face Transformers + Trainer API ## Intended Use & Limitations ### Intended Use - **De-identification**: Automated redaction of PII in French clinical notes, medical records, and documents - **Compliance**: Supporting GDPR, and other privacy regulation compliance - **Data Preprocessing**: Preparing datasets for research by removing sensitive information - **Audit Support**: Identifying PII in document collections ### Limitations **Important**: This model is intended as an **assistive tool**, not a replacement for human review. - **False Negatives**: Some PII may not be detected; always verify critical applications - **Context Sensitivity**: Performance may vary with domain-specific terminology - **Language**: Optimized for French text; may not perform well on other languages ## Citation ```bibtex @misc{openmed-pii-2026, title = {OpenMed-PII-French-GTEMed-Base-149M-v1: French PII Detection Model}, author = {OpenMed Science}, year = {2026}, publisher = {Hugging Face}, url = {https://huggingface.co/OpenMed/OpenMed-PII-French-GTEMed-Base-149M-v1} } ``` ## Links - **Organization**: [OpenMed](https://huggingface.co/OpenMed)