File size: 9,736 Bytes
23d7466
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
---
language:
  - fr
license: apache-2.0
base_model: FacebookAI/roberta-large
tags:
  - token-classification
  - ner
  - pii
  - pii-detection
  - de-identification
  - privacy
  - healthcare
  - medical
  - clinical
  - phi
  - french
  - pytorch
  - transformers
  - openmed
pipeline_tag: token-classification
library_name: transformers
metrics:
  - f1
  - precision
  - recall
model-index:
  - name: OpenMed-PII-French-SuperMedical-Large-355M-v1
    results:
      - task:
          type: token-classification
          name: Named Entity Recognition
        dataset:
          name: AI4Privacy (French subset)
          type: ai4privacy/pii-masking-400k
          split: test
        metrics:
          - type: f1
            value: 0.9728
            name: F1 (micro)
          - type: precision
            value: 0.9712
            name: Precision
          - type: recall
            value: 0.9744
            name: Recall
widget:
  - text: "Dr. Jean Dupont (NSS: 1 85 12 75 108 123 45) peut être contacté à jean.dupont@hopital.fr ou au 06 12 34 56 78. Il habite au 15 Rue de la Paix, 75002 Paris."
    example_title: Clinical Note with PII (French)
---

# OpenMed-PII-French-SuperMedical-Large-355M-v1

**French PII Detection Model** | 355M Parameters | Open Source

[![F1 Score](https://img.shields.io/badge/F1-97.28%25-brightgreen)]() [![Precision](https://img.shields.io/badge/Precision-97.12%25-blue)]() [![Recall](https://img.shields.io/badge/Recall-97.44%25-orange)]()

## Model Description

**OpenMed-PII-French-SuperMedical-Large-355M-v1** is a transformer-based token classification model fine-tuned for **Personally Identifiable Information (PII) detection in French text**. This model identifies and classifies **54 types of sensitive information** including names, addresses, social security numbers, medical record numbers, and more.

### Key Features

- **French-Optimized**: Specifically trained on French text for optimal performance
- **High Accuracy**: Achieves strong F1 scores across diverse PII categories
- **Comprehensive Coverage**: Detects 55+ entity types spanning personal, financial, medical, and contact information
- **Privacy-Focused**: Designed for de-identification and compliance with GDPR and other privacy regulations
- **Production-Ready**: Optimized for real-world text processing pipelines

## Performance

Evaluated on the French subset of AI4Privacy dataset:

| Metric | Score |
|:---|:---:|
| **Micro F1** | **0.9728** |
| Precision | 0.9712 |
| Recall | 0.9744 |
| Macro F1 | 0.9660 |
| Weighted F1 | 0.9724 |
| Accuracy | 0.9962 |

### Top 10 French PII Models

| Rank | Model | F1 | Precision | Recall |
|:---:|:---|:---:|:---:|:---:|
| 1 | [OpenMed-PII-French-SuperClinical-Large-434M-v1](https://huggingface.co/OpenMed/OpenMed-PII-French-SuperClinical-Large-434M-v1) | 0.9797 | 0.9790 | 0.9804 |
| 2 | [OpenMed-PII-French-EuroMed-210M-v1](https://huggingface.co/OpenMed/OpenMed-PII-French-EuroMed-210M-v1) | 0.9762 | 0.9747 | 0.9777 |
| 3 | [OpenMed-PII-French-ClinicalBGE-568M-v1](https://huggingface.co/OpenMed/OpenMed-PII-French-ClinicalBGE-568M-v1) | 0.9733 | 0.9718 | 0.9748 |
| 4 | [OpenMed-PII-French-BigMed-Large-560M-v1](https://huggingface.co/OpenMed/OpenMed-PII-French-BigMed-Large-560M-v1) | 0.9733 | 0.9716 | 0.9749 |
| 5 | [OpenMed-PII-French-SnowflakeMed-Large-568M-v1](https://huggingface.co/OpenMed/OpenMed-PII-French-SnowflakeMed-Large-568M-v1) | 0.9728 | 0.9711 | 0.9745 |
| **6** | **[OpenMed-PII-French-SuperMedical-Large-355M-v1](https://huggingface.co/OpenMed/OpenMed-PII-French-SuperMedical-Large-355M-v1)** | **0.9728** | **0.9712** | **0.9744** |
| 7 | [OpenMed-PII-French-NomicMed-Large-395M-v1](https://huggingface.co/OpenMed/OpenMed-PII-French-NomicMed-Large-395M-v1) | 0.9722 | 0.9704 | 0.9740 |
| 8 | [OpenMed-PII-French-mClinicalE5-Large-560M-v1](https://huggingface.co/OpenMed/OpenMed-PII-French-mClinicalE5-Large-560M-v1) | 0.9713 | 0.9697 | 0.9729 |
| 9 | [OpenMed-PII-French-mSuperClinical-Base-279M-v1](https://huggingface.co/OpenMed/OpenMed-PII-French-mSuperClinical-Base-279M-v1) | 0.9674 | 0.9662 | 0.9687 |
| 10 | [OpenMed-PII-French-ClinicalBGE-Large-335M-v1](https://huggingface.co/OpenMed/OpenMed-PII-French-ClinicalBGE-Large-335M-v1) | 0.9668 | 0.9644 | 0.9692 |

## Supported Entity Types

This model detects **54 PII entity types** organized into categories:

<details>
<summary><strong>Identifiers</strong> (22 types)</summary>

| Entity | Description |
|:---|:---|
| `ACCOUNTNAME` | Accountname |
| `BANKACCOUNT` | Bankaccount |
| `BIC` | Bic |
| `BITCOINADDRESS` | Bitcoinaddress |
| `CREDITCARD` | Creditcard |
| `CREDITCARDISSUER` | Creditcardissuer |
| `CVV` | Cvv |
| `ETHEREUMADDRESS` | Ethereumaddress |
| `IBAN` | Iban |
| `IMEI` | Imei |
| ... | *and 12 more* |

</details>

<details>
<summary><strong>Personal Info</strong> (11 types)</summary>

| Entity | Description |
|:---|:---|
| `AGE` | Age |
| `DATEOFBIRTH` | Dateofbirth |
| `EYECOLOR` | Eyecolor |
| `FIRSTNAME` | Firstname |
| `GENDER` | Gender |
| `HEIGHT` | Height |
| `LASTNAME` | Lastname |
| `MIDDLENAME` | Middlename |
| `OCCUPATION` | Occupation |
| `PREFIX` | Prefix |
| ... | *and 1 more* |

</details>

<details>
<summary><strong>Contact Info</strong> (2 types)</summary>

| Entity | Description |
|:---|:---|
| `EMAIL` | Email |
| `PHONE` | Phone |

</details>

<details>
<summary><strong>Location</strong> (9 types)</summary>

| Entity | Description |
|:---|:---|
| `BUILDINGNUMBER` | Buildingnumber |
| `CITY` | City |
| `COUNTY` | County |
| `GPSCOORDINATES` | Gpscoordinates |
| `ORDINALDIRECTION` | Ordinaldirection |
| `SECONDARYADDRESS` | Secondaryaddress |
| `STATE` | State |
| `STREET` | Street |
| `ZIPCODE` | Zipcode |

</details>

<details>
<summary><strong>Organization</strong> (3 types)</summary>

| Entity | Description |
|:---|:---|
| `JOBDEPARTMENT` | Jobdepartment |
| `JOBTITLE` | Jobtitle |
| `ORGANIZATION` | Organization |

</details>

<details>
<summary><strong>Financial</strong> (5 types)</summary>

| Entity | Description |
|:---|:---|
| `AMOUNT` | Amount |
| `CURRENCY` | Currency |
| `CURRENCYCODE` | Currencycode |
| `CURRENCYNAME` | Currencyname |
| `CURRENCYSYMBOL` | Currencysymbol |

</details>

<details>
<summary><strong>Temporal</strong> (2 types)</summary>

| Entity | Description |
|:---|:---|
| `DATE` | Date |
| `TIME` | Time |

</details>

## Usage

### Quick Start

```python
from transformers import pipeline

# Load the PII detection pipeline
ner = pipeline("ner", model="OpenMed/OpenMed-PII-French-SuperMedical-Large-355M-v1", aggregation_strategy="simple")

text = """
Patient Jean Martin (né le 15/03/1985, NSS: 1 85 03 75 108 234 67) a été vu aujourd'hui.
Contact: jean.martin@email.fr, Téléphone: 06 12 34 56 78.
Adresse: 123 Avenue des Champs-Élysées, 75008 Paris.
"""

entities = ner(text)
for entity in entities:
    print(f"{entity['entity_group']}: {entity['word']} (score: {entity['score']:.3f})")
```

### De-identification Example

```python
def redact_pii(text, entities, placeholder='[REDACTED]'):
    """Replace detected PII with placeholders."""
    # Sort entities by start position (descending) to preserve offsets
    sorted_entities = sorted(entities, key=lambda x: x['start'], reverse=True)
    redacted = text
    for ent in sorted_entities:
        redacted = redacted[:ent['start']] + f"[{ent['entity_group']}]" + redacted[ent['end']:]
    return redacted

# Apply de-identification
redacted_text = redact_pii(text, entities)
print(redacted_text)
```

### Batch Processing

```python
from transformers import AutoModelForTokenClassification, AutoTokenizer
import torch

model_name = "OpenMed/OpenMed-PII-French-SuperMedical-Large-355M-v1"
model = AutoModelForTokenClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

texts = [
    "Patient Jean Martin (né le 15/03/1985, NSS: 1 85 03 75 108 234 67) a été vu aujourd'hui.",
    "Contact: jean.martin@email.fr, Téléphone: 06 12 34 56 78.",
]

inputs = tokenizer(texts, return_tensors='pt', padding=True, truncation=True)
with torch.no_grad():
    outputs = model(**inputs)
    predictions = torch.argmax(outputs.logits, dim=-1)
```

## Training Details

### Dataset

- **Source**: [AI4Privacy PII Masking 400k](https://huggingface.co/datasets/ai4privacy/pii-masking-400k) (French subset)
- **Format**: BIO-tagged token classification
- **Labels**: 109 total (54 entity types × 2 BIO tags + O)

### Training Configuration

- **Max Sequence Length**: 512 tokens
- **Epochs**: 3
- **Framework**: Hugging Face Transformers + Trainer API

## Intended Use & Limitations

### Intended Use

- **De-identification**: Automated redaction of PII in French clinical notes, medical records, and documents
- **Compliance**: Supporting GDPR, and other privacy regulation compliance
- **Data Preprocessing**: Preparing datasets for research by removing sensitive information
- **Audit Support**: Identifying PII in document collections

### Limitations

**Important**: This model is intended as an **assistive tool**, not a replacement for human review.

- **False Negatives**: Some PII may not be detected; always verify critical applications
- **Context Sensitivity**: Performance may vary with domain-specific terminology
- **Language**: Optimized for French text; may not perform well on other languages

## Citation

```bibtex
@misc{openmed-pii-2026,
  title = {OpenMed-PII-French-SuperMedical-Large-355M-v1: French PII Detection Model},
  author = {OpenMed Science},
  year = {2026},
  publisher = {Hugging Face},
  url = {https://huggingface.co/OpenMed/OpenMed-PII-French-SuperMedical-Large-355M-v1}
}
```

## Links

- **Organization**: [OpenMed](https://huggingface.co/OpenMed)