RealLast commited on
Commit
c414bf7
·
verified ·
1 Parent(s): 03ba2f4

Add/update model card

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ # llama-3.2-3b-tsqa-sp
3
+
4
+ This model is part of the OpenTSLM project and was trained on TSQA (Time Series Question Answering) using Llama 3.2 3B as the base language model with Soft Prompt architecture.
5
+
6
+ ## Paper
7
+
8
+ For details, please refer to our publication:
9
+
10
+ **OpenTSLM: Time-Series Language Models for Reasoning over Multivariate Medical Text- and Time-Series Data**
11
+
12
+ Paper: https://huggingface.co/papers/2510.02410
13
+
14
+ ## Usage
15
+ Please check out the [OpenTSLM](https://github.com/OpenTSLM/OpenTSLM) repository for detailed usage examples.
16
+ ```python
17
+ import sys
18
+ import os
19
+ sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "src")))
20
+
21
+ from model.llm.OpenTSLM import OpenTSLM
22
+ from time_series_datasets.TSQADataset import TSQADataset
23
+ from time_series_datasets.util import extend_time_series_to_match_patch_size_and_aggregate
24
+ from torch.utils.data import DataLoader
25
+ from model_config import PATCH_SIZE
26
+
27
+ REPO_ID = "OpenTSLM/llama-3.2-1b-tsqa-sp"
28
+
29
+ # Use CPU or CUDA for inference. MPS does NOT work for pretrained HF checkpoints.
30
+ model = OpenTSLM.load_pretrained(REPO_ID, device="cuda" if torch.cuda.is_available() else "cpu")
31
+ test_dataset = TSQADataset("test", EOS_TOKEN=model.get_eos_token())
32
+
33
+ test_loader = DataLoader(
34
+ test_dataset,
35
+ shuffle=False,
36
+ batch_size=1,
37
+ collate_fn=lambda batch: extend_time_series_to_match_patch_size_and_aggregate(
38
+ batch, patch_size=PATCH_SIZE
39
+ ),
40
+ )
41
+
42
+ for i, batch in enumerate(test_loader):
43
+ predictions = model.generate(batch, max_new_tokens=200)
44
+ for sample, pred in zip(batch, predictions):
45
+ print("Question:", sample.get("pre_prompt", "N/A"))
46
+ print("Answer:", sample.get("answer", "N/A"))
47
+ print("Output:", pred)
48
+ if i >= 4:
49
+ break
50
+ ```
51
+
52
+ ## Citation
53
+
54
+ If you use this model, please cite:
55
+
56
+ ```bibtex
57
+ @misc{langer2025opentslm,
58
+ title = {OpenTSLM: Time-Series Language Models for Reasoning over Multivariate Medical Text- and Time-Series Data},
59
+ author = {Langer, Patrick and Kaar, Thomas and Rosenblattl, Max and Xu, Maxwell A and Chow, Winnie and Maritsch, Martin and Verma, Aradhana and Han, Brian and Kim, Daniel Seung and Chubb, Henry and Ceresnak, Scott and Zahedivash, Aydin and Tarlochan, Alexander and Sandhu, Singh and Rodriguez, Fatima and Mcduff, Daniel and Fleisch, Elgar and Aalami, Oliver and Barata, Filipe and Schmiedmayer, Paul},
60
+ year = {2025},
61
+ note = {Preprint},
62
+ doi = {doi.org/10.13140/RG.2.2.14827.60963}
63
+ }
64
+ ```
65
+
66
+ ## License
67
+
68
+ This model is released under the MIT license.