Create train.py
Browse files
train.py
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from model import ConditionalGenerator, Discriminator
|
| 2 |
+
from data_loader import MultiStyleDataset
|
| 3 |
+
import torch.optim as optim
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
num_styles = len(os.listdir(".styles/"))
|
| 7 |
+
G = ConditionalGenerator(num_styles)
|
| 8 |
+
D = Discriminator(num_styles)
|
| 9 |
+
|
| 10 |
+
opt_G = optim.Adam(G.parameters(), lr=2e-4)
|
| 11 |
+
opt_D = optim.Adam(D.parameters(), lr=2e-4)
|
| 12 |
+
|
| 13 |
+
dataset = MultiStyleDataset(".styles/")
|
| 14 |
+
|
| 15 |
+
for epoch in range(100):
|
| 16 |
+
for img, style_id in dataset:
|
| 17 |
+
|
| 18 |
+
fake_img = G(img.unsqueeze(0), torch.tensor([style_id]))
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
real_loss = torch.mean((D(img.unsqueeze(0), torch.tensor([style_id])) - 1)**2)
|
| 22 |
+
fake_loss = torch.mean(D(fake_img.detach(), torch.tensor([style_id]))**2)
|
| 23 |
+
loss_D = (real_loss + fake_loss) / 2
|
| 24 |
+
|
| 25 |
+
opt_D.zero_grad()
|
| 26 |
+
loss_D.backward()
|
| 27 |
+
opt_D.step()
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
loss_G = torch.mean((D(fake_img, torch.tensor([style_id])) - 1)**2
|
| 31 |
+
opt_G.zero_grad()
|
| 32 |
+
loss_G.backward()
|
| 33 |
+
opt_G.step()
|