TekeshiX commited on
Commit
092599a
·
verified ·
1 Parent(s): f466d98

Upload preprocessor_inpaint.py

Browse files
Files changed (1) hide show
  1. preprocessor_inpaint.py +209 -0
preprocessor_inpaint.py ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import cv2
3
+ import torch
4
+ import numpy as np
5
+ import yaml
6
+ import einops
7
+
8
+ from omegaconf import OmegaConf
9
+ from modules_forge.supported_preprocessor import Preprocessor, PreprocessorParameter
10
+ from modules_forge.utils import numpy_to_pytorch, resize_image_with_pad
11
+ from modules_forge.shared import preprocessor_dir, add_supported_preprocessor
12
+ from modules.modelloader import load_file_from_url
13
+ from annotator.lama.saicinpainting.training.trainers import load_checkpoint
14
+
15
+
16
+ class PreprocessorInpaint(Preprocessor):
17
+ def __init__(self):
18
+ super().__init__()
19
+ self.name = 'inpaint_global_harmonious'
20
+ self.tags = ['Inpaint']
21
+ self.model_filename_filters = ['inpaint']
22
+ self.slider_resolution = PreprocessorParameter(visible=False)
23
+ self.fill_mask_with_one_when_resize_and_fill = True
24
+ self.expand_mask_when_resize_and_fill = True
25
+
26
+ def process_before_every_sampling(self, process, cond, mask, *args, **kwargs):
27
+ mask = mask.round()
28
+ mixed_cond = cond * (1.0 - mask) - mask
29
+ return mixed_cond, None
30
+
31
+ class PreprocessorInpaintNoobAIXL(Preprocessor):
32
+ def __init__(self):
33
+ super().__init__()
34
+ self.name = 'inpaint_noobai_xl'
35
+ self.tags = ['Inpaint']
36
+ self.model_filename_filters = ['inpaint', 'noobai']
37
+ self.slider_resolution = PreprocessorParameter(visible=False)
38
+ self.fill_mask_with_one_when_resize_and_fill = True
39
+ self.expand_mask_when_resize_and_fill = True
40
+
41
+ def __call__(self, input_image, resolution=512, slider_1=None, slider_2=None, slider_3=None, input_mask=None, **kwargs):
42
+ if input_mask is None:
43
+ return input_image
44
+
45
+ if not isinstance(input_image, np.ndarray):
46
+ input_image = np.array(input_image)
47
+ if not isinstance(input_mask, np.ndarray):
48
+ input_mask = np.array(input_mask)
49
+
50
+ mask = input_mask.astype(np.float32) / 255.0
51
+ mask = (mask > 0.5).astype(np.float32)
52
+
53
+ # Create a copy of the input image
54
+ result = input_image.copy()
55
+
56
+ # Convert mask to proper shape if needed
57
+ if mask.ndim == 2:
58
+ mask = np.expand_dims(mask, axis=-1)
59
+ if mask.shape[-1] == 1:
60
+ mask = np.repeat(mask, 3, axis=-1)
61
+
62
+ mask_indices = mask > 0.5
63
+ result[mask_indices] = 0.0
64
+
65
+ return result
66
+
67
+ def process_before_every_sampling(self, process, cond, mask, *args, **kwargs):
68
+ mask = mask.round()
69
+ mixed_cond = cond.clone()
70
+ mixed_cond = mixed_cond * (1.0 - mask)
71
+
72
+ return mixed_cond, None
73
+ class PreprocessorInpaintOnly(PreprocessorInpaint):
74
+ def __init__(self):
75
+ super().__init__()
76
+ self.name = 'inpaint_only'
77
+ self.image = None
78
+ self.mask = None
79
+ self.latent = None
80
+
81
+ def process_before_every_sampling(self, process, cond, mask, *args, **kwargs):
82
+ mask = mask.round()
83
+ self.image = cond
84
+ self.mask = mask
85
+
86
+ vae = process.sd_model.forge_objects.vae
87
+ # This is a powerful VAE with integrated memory management, bf16, and tiled fallback.
88
+
89
+ latent_image = vae.encode(self.image.movedim(1, -1))
90
+ latent_image = process.sd_model.forge_objects.vae.first_stage_model.process_in(latent_image)
91
+
92
+ B, C, H, W = latent_image.shape
93
+
94
+ latent_mask = self.mask
95
+ latent_mask = torch.nn.functional.interpolate(latent_mask, size=(H * 8, W * 8), mode="bilinear").round()
96
+ latent_mask = torch.nn.functional.max_pool2d(latent_mask, (8, 8)).round().to(latent_image)
97
+
98
+ unet = process.sd_model.forge_objects.unet.clone()
99
+
100
+ def pre_cfg(model, c, uc, x, timestep, model_options):
101
+ noisy_latent = latent_image.to(x) + timestep[:, None, None, None].to(x) * torch.randn_like(latent_image).to(x)
102
+ x = x * latent_mask.to(x) + noisy_latent.to(x) * (1.0 - latent_mask.to(x))
103
+ return model, c, uc, x, timestep, model_options
104
+
105
+ def post_cfg(args):
106
+ denoised = args['denoised']
107
+ denoised = denoised * latent_mask.to(denoised) + latent_image.to(denoised) * (1.0 - latent_mask.to(denoised))
108
+ return denoised
109
+
110
+ unet.add_sampler_pre_cfg_function(pre_cfg)
111
+ unet.set_model_sampler_post_cfg_function(post_cfg)
112
+
113
+ process.sd_model.forge_objects.unet = unet
114
+
115
+ self.latent = latent_image
116
+
117
+ mixed_cond = cond * (1.0 - mask) - mask
118
+
119
+ return mixed_cond, None
120
+
121
+ def process_after_every_sampling(self, process, params, *args, **kwargs):
122
+ a1111_batch_result = args[0]
123
+ new_results = []
124
+
125
+ for img in a1111_batch_result.images:
126
+ sigma = 7
127
+ mask = self.mask[0, 0].detach().cpu().numpy().astype(np.float32)
128
+ mask = cv2.dilate(mask, np.ones((sigma, sigma), dtype=np.uint8))
129
+ mask = cv2.blur(mask, (sigma, sigma))[None]
130
+ mask = torch.from_numpy(np.ascontiguousarray(mask).copy()).to(img).clip(0, 1)
131
+ raw = self.image[0].to(img).clip(0, 1)
132
+ img = img.clip(0, 1)
133
+ new_results.append(raw * (1.0 - mask) + img * mask)
134
+
135
+ a1111_batch_result.images = new_results
136
+ return
137
+
138
+
139
+ class PreprocessorInpaintLama(PreprocessorInpaintOnly):
140
+ def __init__(self):
141
+ super().__init__()
142
+ self.name = 'inpaint_only+lama'
143
+
144
+ def load_model(self):
145
+ remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/ControlNetLama.pth"
146
+ model_path = load_file_from_url(remote_model_path, model_dir=preprocessor_dir)
147
+ config_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'lama_config.yaml')
148
+ cfg = yaml.safe_load(open(config_path, 'rt'))
149
+ cfg = OmegaConf.create(cfg)
150
+ cfg.training_model.predict_only = True
151
+ cfg.visualizer.kind = 'noop'
152
+ model = load_checkpoint(cfg, os.path.abspath(model_path), strict=False, map_location='cpu')
153
+ self.setup_model_patcher(model)
154
+ return
155
+
156
+ def __call__(self, input_image, resolution, slider_1=None, slider_2=None, slider_3=None, input_mask=None, **kwargs):
157
+ if input_mask is None:
158
+ return input_image
159
+
160
+ H, W, C = input_image.shape
161
+ raw_color = input_image.copy()
162
+ raw_mask = input_mask.copy()
163
+
164
+ input_image, remove_pad = resize_image_with_pad(input_image, 256)
165
+ input_mask, remove_pad = resize_image_with_pad(input_mask, 256)
166
+ input_mask = input_mask[..., :1]
167
+
168
+ self.load_model()
169
+
170
+ self.move_all_model_patchers_to_gpu()
171
+
172
+ color = np.ascontiguousarray(input_image).astype(np.float32) / 255.0
173
+ mask = np.ascontiguousarray(input_mask).astype(np.float32) / 255.0
174
+ with torch.no_grad():
175
+ color = self.send_tensor_to_model_device(torch.from_numpy(color))
176
+ mask = self.send_tensor_to_model_device(torch.from_numpy(mask))
177
+ mask = (mask > 0.5).float()
178
+ color = color * (1 - mask)
179
+ image_feed = torch.cat([color, mask], dim=2)
180
+ image_feed = einops.rearrange(image_feed, 'h w c -> 1 c h w')
181
+ prd_color = self.model_patcher.model(image_feed)[0]
182
+ prd_color = einops.rearrange(prd_color, 'c h w -> h w c')
183
+ prd_color = prd_color * mask + color * (1 - mask)
184
+ prd_color *= 255.0
185
+ prd_color = prd_color.detach().cpu().numpy().clip(0, 255).astype(np.uint8)
186
+
187
+ prd_color = remove_pad(prd_color)
188
+ prd_color = cv2.resize(prd_color, (W, H))
189
+
190
+ alpha = raw_mask.astype(np.float32) / 255.0
191
+ fin_color = prd_color.astype(np.float32) * alpha + raw_color.astype(np.float32) * (1 - alpha)
192
+ fin_color = fin_color.clip(0, 255).astype(np.uint8)
193
+
194
+ return fin_color
195
+
196
+ def process_before_every_sampling(self, process, cond, mask, *args, **kwargs):
197
+ cond, mask = super().process_before_every_sampling(process, cond, mask, *args, **kwargs)
198
+ sigma_max = process.sd_model.forge_objects.unet.model.predictor.sigma_max
199
+ original_noise = kwargs['noise']
200
+ process.modified_noise = original_noise + self.latent.to(original_noise) / sigma_max.to(original_noise)
201
+ return cond, mask
202
+
203
+ add_supported_preprocessor(PreprocessorInpaintNoobAIXL())
204
+
205
+ add_supported_preprocessor(PreprocessorInpaint())
206
+
207
+ add_supported_preprocessor(PreprocessorInpaintOnly())
208
+
209
+ add_supported_preprocessor(PreprocessorInpaintLama())