--- language: - af - ar - az - be - bg - bn - ca - ceb - cs - cy - da - de - el - en - es - et - eu - fa - fi - fr - gl - gu - he - hi - hr - ht - hu - hy - id - is - it - ja - jv - ka - kk - km - kn - ko - ky - lo - lt - lv - mk - ml - mn - mr - ms - my - ne - nl - 'no' - pa - pl - pt - qu - ro - ru - si - sk - sl - so - sq - sr - sv - sw - ta - te - th - tl - tr - uk - ur - vi - yo - zh license: apache-2.0 model-index: - name: gte-multilingual-base (dense) results: - dataset: config: default name: MTEB 8TagsClustering revision: None split: test type: PL-MTEB/8tags-clustering metrics: - type: v_measure value: 33.66681726329994 task: type: Clustering - dataset: config: default name: MTEB AFQMC revision: b44c3b011063adb25877c13823db83bb193913c4 split: validation type: C-MTEB/AFQMC metrics: - type: cos_sim_spearman value: 43.54760696384009 task: type: STS - dataset: config: default name: MTEB ATEC revision: 0f319b1142f28d00e055a6770f3f726ae9b7d865 split: test type: C-MTEB/ATEC metrics: - type: cos_sim_spearman value: 48.91186363417501 task: type: STS - dataset: config: default name: MTEB AllegroReviews revision: None split: test type: PL-MTEB/allegro-reviews metrics: - type: accuracy value: 41.689860834990064 task: type: Classification - dataset: config: default name: MTEB AlloProfClusteringP2P revision: 392ba3f5bcc8c51f578786c1fc3dae648662cb9b split: test type: lyon-nlp/alloprof metrics: - type: v_measure value: 54.20241337977897 - type: v_measure value: 44.34083695608643 task: type: Clustering - dataset: config: default name: MTEB AlloprofReranking revision: 666fdacebe0291776e86f29345663dfaf80a0db9 split: test type: lyon-nlp/mteb-fr-reranking-alloprof-s2p metrics: - type: map value: 64.91495250072002 task: type: Reranking - dataset: config: default name: MTEB AlloprofRetrieval revision: 392ba3f5bcc8c51f578786c1fc3dae648662cb9b split: test type: lyon-nlp/alloprof metrics: - type: ndcg_at_10 value: 53.638 task: type: Retrieval - dataset: config: en name: MTEB AmazonCounterfactualClassification (en) revision: e8379541af4e31359cca9fbcf4b00f2671dba205 split: test type: mteb/amazon_counterfactual metrics: - type: accuracy value: 75.95522388059702 task: type: Classification - dataset: config: default name: MTEB AmazonPolarityClassification revision: e2d317d38cd51312af73b3d32a06d1a08b442046 split: test type: mteb/amazon_polarity metrics: - type: accuracy value: 80.717625 task: type: Classification - dataset: config: en name: MTEB AmazonReviewsClassification (en) revision: 1399c76144fd37290681b995c656ef9b2e06e26d split: test type: mteb/amazon_reviews_multi metrics: - type: accuracy value: 43.64199999999999 task: type: Classification - dataset: config: de name: MTEB AmazonReviewsClassification (de) revision: 1399c76144fd37290681b995c656ef9b2e06e26d split: test type: mteb/amazon_reviews_multi metrics: - type: accuracy value: 40.108 task: type: Classification - dataset: config: es name: MTEB AmazonReviewsClassification (es) revision: 1399c76144fd37290681b995c656ef9b2e06e26d split: test type: mteb/amazon_reviews_multi metrics: - type: accuracy value: 40.169999999999995 task: type: Classification - dataset: config: fr name: MTEB AmazonReviewsClassification (fr) revision: 1399c76144fd37290681b995c656ef9b2e06e26d split: test type: mteb/amazon_reviews_multi metrics: - type: accuracy value: 39.56799999999999 task: type: Classification - dataset: config: ja name: MTEB AmazonReviewsClassification (ja) revision: 1399c76144fd37290681b995c656ef9b2e06e26d split: test type: mteb/amazon_reviews_multi metrics: - type: accuracy value: 35.75000000000001 task: type: Classification - dataset: config: zh name: MTEB AmazonReviewsClassification (zh) revision: 1399c76144fd37290681b995c656ef9b2e06e26d split: test type: mteb/amazon_reviews_multi metrics: - type: accuracy value: 33.342000000000006 task: type: Classification - dataset: config: default name: MTEB ArguAna revision: c22ab2a51041ffd869aaddef7af8d8215647e41a split: test type: mteb/arguana metrics: - type: ndcg_at_10 value: 58.231 task: type: Retrieval - dataset: config: default name: MTEB ArguAna-PL revision: 63fc86750af76253e8c760fc9e534bbf24d260a2 split: test type: clarin-knext/arguana-pl metrics: - type: ndcg_at_10 value: 53.166000000000004 task: type: Retrieval - dataset: config: default name: MTEB ArxivClusteringP2P revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d split: test type: mteb/arxiv-clustering-p2p metrics: - type: v_measure value: 46.01900557959478 task: type: Clustering - dataset: config: default name: MTEB ArxivClusteringS2S revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 split: test type: mteb/arxiv-clustering-s2s metrics: - type: v_measure value: 41.06626465345723 task: type: Clustering - dataset: config: default name: MTEB AskUbuntuDupQuestions revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 split: test type: mteb/askubuntudupquestions-reranking metrics: - type: map value: 61.87514497610431 task: type: Reranking - dataset: config: default name: MTEB BIOSSES revision: d3fb88f8f02e40887cd149695127462bbcf29b4a split: test type: mteb/biosses-sts metrics: - type: cos_sim_spearman value: 81.21450112991194 task: type: STS - dataset: config: default name: MTEB BQ revision: e3dda5e115e487b39ec7e618c0c6a29137052a55 split: test type: C-MTEB/BQ metrics: - type: cos_sim_spearman value: 51.71589543397271 task: type: STS - dataset: config: default name: MTEB BSARDRetrieval revision: 5effa1b9b5fa3b0f9e12523e6e43e5f86a6e6d59 split: test type: maastrichtlawtech/bsard metrics: - type: ndcg_at_10 value: 26.115 task: type: Retrieval - dataset: config: de-en name: MTEB BUCC (de-en) revision: d51519689f32196a32af33b075a01d0e7c51e252 split: test type: mteb/bucc-bitext-mining metrics: - type: f1 value: 98.6169102296451 task: type: BitextMining - dataset: config: fr-en name: MTEB BUCC (fr-en) revision: d51519689f32196a32af33b075a01d0e7c51e252 split: test type: mteb/bucc-bitext-mining metrics: - type: f1 value: 97.89603052314916 task: type: BitextMining - dataset: config: ru-en name: MTEB BUCC (ru-en) revision: d51519689f32196a32af33b075a01d0e7c51e252 split: test type: mteb/bucc-bitext-mining metrics: - type: f1 value: 97.12388869645537 task: type: BitextMining - dataset: config: zh-en name: MTEB BUCC (zh-en) revision: d51519689f32196a32af33b075a01d0e7c51e252 split: test type: mteb/bucc-bitext-mining metrics: - type: f1 value: 98.15692469720906 task: type: BitextMining - dataset: config: default name: MTEB Banking77Classification revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 split: test type: mteb/banking77 metrics: - type: accuracy value: 85.36038961038962 task: type: Classification - dataset: config: default name: MTEB BiorxivClusteringP2P revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 split: test type: mteb/biorxiv-clustering-p2p metrics: - type: v_measure value: 37.5903826674123 task: type: Clustering - dataset: config: default name: MTEB BiorxivClusteringS2S revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 split: test type: mteb/biorxiv-clustering-s2s metrics: - type: v_measure value: 34.21474277151329 task: type: Clustering - dataset: config: default name: MTEB CBD revision: None split: test type: PL-MTEB/cbd metrics: - type: accuracy value: 62.519999999999996 task: type: Classification - dataset: config: default name: MTEB CDSC-E revision: None split: test type: PL-MTEB/cdsce-pairclassification metrics: - type: cos_sim_ap value: 74.90132799162956 task: type: PairClassification - dataset: config: default name: MTEB CDSC-R revision: None split: test type: PL-MTEB/cdscr-sts metrics: - type: cos_sim_spearman value: 90.30727955142524 task: type: STS - dataset: config: default name: MTEB CLSClusteringP2P revision: 4b6227591c6c1a73bc76b1055f3b7f3588e72476 split: test type: C-MTEB/CLSClusteringP2P metrics: - type: v_measure value: 37.94850105022274 task: type: Clustering - dataset: config: default name: MTEB CLSClusteringS2S revision: e458b3f5414b62b7f9f83499ac1f5497ae2e869f split: test type: C-MTEB/CLSClusteringS2S metrics: - type: v_measure value: 38.11958675421534 task: type: Clustering - dataset: config: default name: MTEB CMedQAv1 revision: 8d7f1e942507dac42dc58017c1a001c3717da7df split: test type: C-MTEB/CMedQAv1-reranking metrics: - type: map value: 86.10950950485399 task: type: Reranking - dataset: config: default name: MTEB CMedQAv2 revision: 23d186750531a14a0357ca22cd92d712fd512ea0 split: test type: C-MTEB/CMedQAv2-reranking metrics: - type: map value: 87.28038294231966 task: type: Reranking - dataset: config: default name: MTEB CQADupstackAndroidRetrieval revision: f46a197baaae43b4f621051089b82a364682dfeb split: test type: mteb/cqadupstack-android metrics: - type: ndcg_at_10 value: 47.099000000000004 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackEnglishRetrieval revision: ad9991cb51e31e31e430383c75ffb2885547b5f0 split: test type: mteb/cqadupstack-english metrics: - type: ndcg_at_10 value: 45.973000000000006 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackGamingRetrieval revision: 4885aa143210c98657558c04aaf3dc47cfb54340 split: test type: mteb/cqadupstack-gaming metrics: - type: ndcg_at_10 value: 55.606 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackGisRetrieval revision: 5003b3064772da1887988e05400cf3806fe491f2 split: test type: mteb/cqadupstack-gis metrics: - type: ndcg_at_10 value: 36.638 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackMathematicaRetrieval revision: 90fceea13679c63fe563ded68f3b6f06e50061de split: test type: mteb/cqadupstack-mathematica metrics: - type: ndcg_at_10 value: 30.711 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackPhysicsRetrieval revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4 split: test type: mteb/cqadupstack-physics metrics: - type: ndcg_at_10 value: 44.523 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackProgrammersRetrieval revision: 6184bc1440d2dbc7612be22b50686b8826d22b32 split: test type: mteb/cqadupstack-programmers metrics: - type: ndcg_at_10 value: 37.940000000000005 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackRetrieval revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4 split: test type: mteb/cqadupstack metrics: - type: ndcg_at_10 value: 38.12183333333333 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackStatsRetrieval revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a split: test type: mteb/cqadupstack-stats metrics: - type: ndcg_at_10 value: 32.684000000000005 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackTexRetrieval revision: 46989137a86843e03a6195de44b09deda022eec7 split: test type: mteb/cqadupstack-tex metrics: - type: ndcg_at_10 value: 26.735 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackUnixRetrieval revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53 split: test type: mteb/cqadupstack-unix metrics: - type: ndcg_at_10 value: 36.933 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackWebmastersRetrieval revision: 160c094312a0e1facb97e55eeddb698c0abe3571 split: test type: mteb/cqadupstack-webmasters metrics: - type: ndcg_at_10 value: 33.747 task: type: Retrieval - dataset: config: default name: MTEB CQADupstackWordpressRetrieval revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4 split: test type: mteb/cqadupstack-wordpress metrics: - type: ndcg_at_10 value: 28.872999999999998 task: type: Retrieval - dataset: config: default name: MTEB ClimateFEVER revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380 split: test type: mteb/climate-fever metrics: - type: ndcg_at_10 value: 34.833 task: type: Retrieval - dataset: config: default name: MTEB CmedqaRetrieval revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301 split: dev type: C-MTEB/CmedqaRetrieval metrics: - type: ndcg_at_10 value: 43.78 task: type: Retrieval - dataset: config: default name: MTEB Cmnli revision: 41bc36f332156f7adc9e38f53777c959b2ae9766 split: validation type: C-MTEB/CMNLI metrics: - type: cos_sim_ap value: 84.00640599186677 task: type: PairClassification - dataset: config: default name: MTEB CovidRetrieval revision: 1271c7809071a13532e05f25fb53511ffce77117 split: dev type: C-MTEB/CovidRetrieval metrics: - type: ndcg_at_10 value: 80.60000000000001 task: type: Retrieval - dataset: config: default name: MTEB DBPedia revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659 split: test type: mteb/dbpedia metrics: - type: ndcg_at_10 value: 40.116 task: type: Retrieval - dataset: config: default name: MTEB DBPedia-PL revision: 76afe41d9af165cc40999fcaa92312b8b012064a split: test type: clarin-knext/dbpedia-pl metrics: - type: ndcg_at_10 value: 32.498 task: type: Retrieval - dataset: config: default name: MTEB DuRetrieval revision: a1a333e290fe30b10f3f56498e3a0d911a693ced split: dev type: C-MTEB/DuRetrieval metrics: - type: ndcg_at_10 value: 87.547 task: type: Retrieval - dataset: config: default name: MTEB EcomRetrieval revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9 split: dev type: C-MTEB/EcomRetrieval metrics: - type: ndcg_at_10 value: 64.85 task: type: Retrieval - dataset: config: default name: MTEB EmotionClassification revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 split: test type: mteb/emotion metrics: - type: accuracy value: 47.949999999999996 task: type: Classification - dataset: config: default name: MTEB FEVER revision: bea83ef9e8fb933d90a2f1d5515737465d613e12 split: test type: mteb/fever metrics: - type: ndcg_at_10 value: 92.111 task: type: Retrieval - dataset: config: default name: MTEB FiQA-PL revision: 2e535829717f8bf9dc829b7f911cc5bbd4e6608e split: test type: clarin-knext/fiqa-pl metrics: - type: ndcg_at_10 value: 28.962 task: type: Retrieval - dataset: config: default name: MTEB FiQA2018 revision: 27a168819829fe9bcd655c2df245fb19452e8e06 split: test type: mteb/fiqa metrics: - type: ndcg_at_10 value: 45.005 task: type: Retrieval - dataset: config: default name: MTEB HALClusteringS2S revision: e06ebbbb123f8144bef1a5d18796f3dec9ae2915 split: test type: lyon-nlp/clustering-hal-s2s metrics: - type: v_measure value: 25.133776435657595 task: type: Clustering - dataset: config: default name: MTEB HotpotQA revision: ab518f4d6fcca38d87c25209f94beba119d02014 split: test type: mteb/hotpotqa metrics: - type: ndcg_at_10 value: 63.036 task: type: Retrieval - dataset: config: default name: MTEB HotpotQA-PL revision: a0bd479ac97b4ccb5bd6ce320c415d0bb4beb907 split: test type: clarin-knext/hotpotqa-pl metrics: - type: ndcg_at_10 value: 56.904999999999994 task: type: Retrieval - dataset: config: default name: MTEB IFlyTek revision: 421605374b29664c5fc098418fe20ada9bd55f8a split: validation type: C-MTEB/IFlyTek-classification metrics: - type: accuracy value: 44.59407464409388 task: type: Classification - dataset: config: default name: MTEB ImdbClassification revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 split: test type: mteb/imdb metrics: - type: accuracy value: 74.912 task: type: Classification - dataset: config: default name: MTEB JDReview revision: b7c64bd89eb87f8ded463478346f76731f07bf8b split: test type: C-MTEB/JDReview-classification metrics: - type: accuracy value: 79.26829268292683 task: type: Classification - dataset: config: default name: MTEB LCQMC revision: 17f9b096f80380fce5ed12a9be8be7784b337daf split: test type: C-MTEB/LCQMC metrics: - type: cos_sim_spearman value: 74.8601229809791 task: type: STS - dataset: config: default name: MTEB MLSUMClusteringP2P revision: b5d54f8f3b61ae17845046286940f03c6bc79bc7 split: test type: mlsum metrics: - type: v_measure value: 42.331902754246556 - type: v_measure value: 40.92029335502153 task: type: Clustering - dataset: config: default name: MTEB MMarcoReranking revision: 8e0c766dbe9e16e1d221116a3f36795fbade07f6 split: dev type: C-MTEB/Mmarco-reranking metrics: - type: map value: 32.19266316591337 task: type: Reranking - dataset: config: default name: MTEB MMarcoRetrieval revision: 539bbde593d947e2a124ba72651aafc09eb33fc2 split: dev type: C-MTEB/MMarcoRetrieval metrics: - type: ndcg_at_10 value: 79.346 task: type: Retrieval - dataset: config: default name: MTEB MSMARCO revision: c5a29a104738b98a9e76336939199e264163d4a0 split: dev type: mteb/msmarco metrics: - type: ndcg_at_10 value: 39.922999999999995 task: type: Retrieval - dataset: config: default name: MTEB MSMARCO-PL revision: 8634c07806d5cce3a6138e260e59b81760a0a640 split: test type: clarin-knext/msmarco-pl metrics: - type: ndcg_at_10 value: 55.620999999999995 task: type: Retrieval - dataset: config: en name: MTEB MTOPDomainClassification (en) revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf split: test type: mteb/mtop_domain metrics: - type: accuracy value: 92.53989968080255 task: type: Classification - dataset: config: de name: MTEB MTOPDomainClassification (de) revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf split: test type: mteb/mtop_domain metrics: - type: accuracy value: 88.26993519301212 task: type: Classification - dataset: config: es name: MTEB MTOPDomainClassification (es) revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf split: test type: mteb/mtop_domain metrics: - type: accuracy value: 90.87725150100067 task: type: Classification - dataset: config: fr name: MTEB MTOPDomainClassification (fr) revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf split: test type: mteb/mtop_domain metrics: - type: accuracy value: 87.48512370811149 task: type: Classification - dataset: config: hi name: MTEB MTOPDomainClassification (hi) revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf split: test type: mteb/mtop_domain metrics: - type: accuracy value: 89.45141627823591 task: type: Classification - dataset: config: th name: MTEB MTOPDomainClassification (th) revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf split: test type: mteb/mtop_domain metrics: - type: accuracy value: 83.45750452079565 task: type: Classification - dataset: config: en name: MTEB MTOPIntentClassification (en) revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba split: test type: mteb/mtop_intent metrics: - type: accuracy value: 72.57637938896488 task: type: Classification - dataset: config: de name: MTEB MTOPIntentClassification (de) revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba split: test type: mteb/mtop_intent metrics: - type: accuracy value: 63.50803043110736 task: type: Classification - dataset: config: es name: MTEB MTOPIntentClassification (es) revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba split: test type: mteb/mtop_intent metrics: - type: accuracy value: 71.6577718478986 task: type: Classification - dataset: config: fr name: MTEB MTOPIntentClassification (fr) revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba split: test type: mteb/mtop_intent metrics: - type: accuracy value: 64.05887879736925 task: type: Classification - dataset: config: hi name: MTEB MTOPIntentClassification (hi) revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba split: test type: mteb/mtop_intent metrics: - type: accuracy value: 65.27070634636071 task: type: Classification - dataset: config: th name: MTEB MTOPIntentClassification (th) revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba split: test type: mteb/mtop_intent metrics: - type: accuracy value: 63.04520795660037 task: type: Classification - dataset: config: fra name: MTEB MasakhaNEWSClassification (fra) revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60 split: test type: masakhane/masakhanews metrics: - type: accuracy value: 80.66350710900474 task: type: Classification - dataset: config: fra name: MTEB MasakhaNEWSClusteringP2P (fra) revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60 split: test type: masakhane/masakhanews metrics: - type: v_measure value: 44.016506455899425 - type: v_measure value: 40.67730129573544 task: type: Clustering - dataset: config: af name: MTEB MassiveIntentClassification (af) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 57.94552790854068 task: type: Classification - dataset: config: am name: MTEB MassiveIntentClassification (am) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 49.273705447209146 task: type: Classification - dataset: config: ar name: MTEB MassiveIntentClassification (ar) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 55.490921318090116 task: type: Classification - dataset: config: az name: MTEB MassiveIntentClassification (az) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 60.97511768661733 task: type: Classification - dataset: config: bn name: MTEB MassiveIntentClassification (bn) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 57.5689307330195 task: type: Classification - dataset: config: cy name: MTEB MassiveIntentClassification (cy) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 48.34902488231337 task: type: Classification - dataset: config: da name: MTEB MassiveIntentClassification (da) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 63.6684599865501 task: type: Classification - dataset: config: de name: MTEB MassiveIntentClassification (de) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 62.54539340954942 task: type: Classification - dataset: config: el name: MTEB MassiveIntentClassification (el) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 63.08675184936112 task: type: Classification - dataset: config: en name: MTEB MassiveIntentClassification (en) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 72.12508406186953 task: type: Classification - dataset: config: es name: MTEB MassiveIntentClassification (es) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 67.41425689307331 task: type: Classification - dataset: config: fa name: MTEB MassiveIntentClassification (fa) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 65.59515803631474 task: type: Classification - dataset: config: fi name: MTEB MassiveIntentClassification (fi) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 62.90517821116342 task: type: Classification - dataset: config: fr name: MTEB MassiveIntentClassification (fr) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 67.91526563550774 task: type: Classification - dataset: config: he name: MTEB MassiveIntentClassification (he) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 55.198386012104905 task: type: Classification - dataset: config: hi name: MTEB MassiveIntentClassification (hi) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 65.04371217215869 task: type: Classification - dataset: config: hu name: MTEB MassiveIntentClassification (hu) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 63.31203765971756 task: type: Classification - dataset: config: hy name: MTEB MassiveIntentClassification (hy) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 55.521183591123055 task: type: Classification - dataset: config: id name: MTEB MassiveIntentClassification (id) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 66.06254203093476 task: type: Classification - dataset: config: is name: MTEB MassiveIntentClassification (is) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 56.01546738399461 task: type: Classification - dataset: config: it name: MTEB MassiveIntentClassification (it) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 67.27975790181574 task: type: Classification - dataset: config: ja name: MTEB MassiveIntentClassification (ja) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 66.79556153328849 task: type: Classification - dataset: config: jv name: MTEB MassiveIntentClassification (jv) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 50.18493611297915 task: type: Classification - dataset: config: ka name: MTEB MassiveIntentClassification (ka) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 47.888365837256224 task: type: Classification - dataset: config: km name: MTEB MassiveIntentClassification (km) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 50.79690652320108 task: type: Classification - dataset: config: kn name: MTEB MassiveIntentClassification (kn) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 57.225958305312716 task: type: Classification - dataset: config: ko name: MTEB MassiveIntentClassification (ko) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 64.58641560188299 task: type: Classification - dataset: config: lv name: MTEB MassiveIntentClassification (lv) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 59.08204438466711 task: type: Classification - dataset: config: ml name: MTEB MassiveIntentClassification (ml) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 59.54606590450572 task: type: Classification - dataset: config: mn name: MTEB MassiveIntentClassification (mn) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 53.443174176193665 task: type: Classification - dataset: config: ms name: MTEB MassiveIntentClassification (ms) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 61.65097511768661 task: type: Classification - dataset: config: my name: MTEB MassiveIntentClassification (my) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 53.45662407531944 task: type: Classification - dataset: config: nb name: MTEB MassiveIntentClassification (nb) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 63.739071956960316 task: type: Classification - dataset: config: nl name: MTEB MassiveIntentClassification (nl) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 66.36180228648286 task: type: Classification - dataset: config: pl name: MTEB MassiveIntentClassification (pl) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 66.3920645595158 task: type: Classification - dataset: config: pt name: MTEB MassiveIntentClassification (pt) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 68.06993947545395 task: type: Classification - dataset: config: ro name: MTEB MassiveIntentClassification (ro) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 63.123739071956955 task: type: Classification - dataset: config: ru name: MTEB MassiveIntentClassification (ru) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 67.46133154001346 task: type: Classification - dataset: config: sl name: MTEB MassiveIntentClassification (sl) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 60.54472091459314 task: type: Classification - dataset: config: sq name: MTEB MassiveIntentClassification (sq) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 58.204438466711494 task: type: Classification - dataset: config: sv name: MTEB MassiveIntentClassification (sv) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 65.69603227975792 task: type: Classification - dataset: config: sw name: MTEB MassiveIntentClassification (sw) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 51.684599865501 task: type: Classification - dataset: config: ta name: MTEB MassiveIntentClassification (ta) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 58.523873570948226 task: type: Classification - dataset: config: te name: MTEB MassiveIntentClassification (te) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 58.53396099529253 task: type: Classification - dataset: config: th name: MTEB MassiveIntentClassification (th) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 61.88298587760591 task: type: Classification - dataset: config: tl name: MTEB MassiveIntentClassification (tl) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 56.65097511768662 task: type: Classification - dataset: config: tr name: MTEB MassiveIntentClassification (tr) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 64.8453261600538 task: type: Classification - dataset: config: ur name: MTEB MassiveIntentClassification (ur) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 58.6247478143914 task: type: Classification - dataset: config: vi name: MTEB MassiveIntentClassification (vi) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 64.16274377942166 task: type: Classification - dataset: config: zh-CN name: MTEB MassiveIntentClassification (zh-CN) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 69.61667787491594 task: type: Classification - dataset: config: zh-TW name: MTEB MassiveIntentClassification (zh-TW) revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 split: test type: mteb/amazon_massive_intent metrics: - type: accuracy value: 64.17283120376598 task: type: Classification - dataset: config: af name: MTEB MassiveScenarioClassification (af) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 64.89912575655683 task: type: Classification - dataset: config: am name: MTEB MassiveScenarioClassification (am) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 57.27975790181573 task: type: Classification - dataset: config: ar name: MTEB MassiveScenarioClassification (ar) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 62.269670477471415 task: type: Classification - dataset: config: az name: MTEB MassiveScenarioClassification (az) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 65.10423671822461 task: type: Classification - dataset: config: bn name: MTEB MassiveScenarioClassification (bn) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 62.40753194351043 task: type: Classification - dataset: config: cy name: MTEB MassiveScenarioClassification (cy) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 55.369872225958304 task: type: Classification - dataset: config: da name: MTEB MassiveScenarioClassification (da) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 71.60726294552792 task: type: Classification - dataset: config: de name: MTEB MassiveScenarioClassification (de) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 70.30262273032952 task: type: Classification - dataset: config: el name: MTEB MassiveScenarioClassification (el) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 69.52925353059851 task: type: Classification - dataset: config: en name: MTEB MassiveScenarioClassification (en) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 76.28446536650976 task: type: Classification - dataset: config: es name: MTEB MassiveScenarioClassification (es) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 72.45460659045058 task: type: Classification - dataset: config: fa name: MTEB MassiveScenarioClassification (fa) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 70.26563550773368 task: type: Classification - dataset: config: fi name: MTEB MassiveScenarioClassification (fi) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 67.20578345662408 task: type: Classification - dataset: config: fr name: MTEB MassiveScenarioClassification (fr) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 72.64963012777405 task: type: Classification - dataset: config: he name: MTEB MassiveScenarioClassification (he) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 61.698049764626774 task: type: Classification - dataset: config: hi name: MTEB MassiveScenarioClassification (hi) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 70.14458641560188 task: type: Classification - dataset: config: hu name: MTEB MassiveScenarioClassification (hu) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 70.51445864156018 task: type: Classification - dataset: config: hy name: MTEB MassiveScenarioClassification (hy) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 60.13786146603901 task: type: Classification - dataset: config: id name: MTEB MassiveScenarioClassification (id) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 70.61533288500337 task: type: Classification - dataset: config: is name: MTEB MassiveScenarioClassification (is) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 61.526563550773375 task: type: Classification - dataset: config: it name: MTEB MassiveScenarioClassification (it) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 71.99731002017484 task: type: Classification - dataset: config: ja name: MTEB MassiveScenarioClassification (ja) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 71.59381304640216 task: type: Classification - dataset: config: jv name: MTEB MassiveScenarioClassification (jv) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 57.010759919300604 task: type: Classification - dataset: config: ka name: MTEB MassiveScenarioClassification (ka) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 53.26160053799597 task: type: Classification - dataset: config: km name: MTEB MassiveScenarioClassification (km) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 57.800941492938804 task: type: Classification - dataset: config: kn name: MTEB MassiveScenarioClassification (kn) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 62.387357094821795 task: type: Classification - dataset: config: ko name: MTEB MassiveScenarioClassification (ko) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 69.5359784801614 task: type: Classification - dataset: config: lv name: MTEB MassiveScenarioClassification (lv) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 63.36919973100203 task: type: Classification - dataset: config: ml name: MTEB MassiveScenarioClassification (ml) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 64.81506388702084 task: type: Classification - dataset: config: mn name: MTEB MassiveScenarioClassification (mn) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 59.35104236718225 task: type: Classification - dataset: config: ms name: MTEB MassiveScenarioClassification (ms) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 66.67787491593813 task: type: Classification - dataset: config: my name: MTEB MassiveScenarioClassification (my) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 59.4250168123739 task: type: Classification - dataset: config: nb name: MTEB MassiveScenarioClassification (nb) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 71.49630127774043 task: type: Classification - dataset: config: nl name: MTEB MassiveScenarioClassification (nl) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 71.95696032279758 task: type: Classification - dataset: config: pl name: MTEB MassiveScenarioClassification (pl) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 70.11768661735036 task: type: Classification - dataset: config: pt name: MTEB MassiveScenarioClassification (pt) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 71.86953597848016 task: type: Classification - dataset: config: ro name: MTEB MassiveScenarioClassification (ro) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 68.51042367182247 task: type: Classification - dataset: config: ru name: MTEB MassiveScenarioClassification (ru) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 71.65097511768661 task: type: Classification - dataset: config: sl name: MTEB MassiveScenarioClassification (sl) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 66.81573638197713 task: type: Classification - dataset: config: sq name: MTEB MassiveScenarioClassification (sq) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 65.26227303295225 task: type: Classification - dataset: config: sv name: MTEB MassiveScenarioClassification (sv) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 72.51513113651646 task: type: Classification - dataset: config: sw name: MTEB MassiveScenarioClassification (sw) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 58.29858776059179 task: type: Classification - dataset: config: ta name: MTEB MassiveScenarioClassification (ta) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 62.72696704774714 task: type: Classification - dataset: config: te name: MTEB MassiveScenarioClassification (te) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 66.57700067249496 task: type: Classification - dataset: config: th name: MTEB MassiveScenarioClassification (th) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 68.22797579018157 task: type: Classification - dataset: config: tl name: MTEB MassiveScenarioClassification (tl) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 61.97041022192333 task: type: Classification - dataset: config: tr name: MTEB MassiveScenarioClassification (tr) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 70.72629455279085 task: type: Classification - dataset: config: ur name: MTEB MassiveScenarioClassification (ur) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 63.16072629455278 task: type: Classification - dataset: config: vi name: MTEB MassiveScenarioClassification (vi) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 67.92199058507062 task: type: Classification - dataset: config: zh-CN name: MTEB MassiveScenarioClassification (zh-CN) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 74.40484196368527 task: type: Classification - dataset: config: zh-TW name: MTEB MassiveScenarioClassification (zh-TW) revision: 7d571f92784cd94a019292a1f45445077d0ef634 split: test type: mteb/amazon_massive_scenario metrics: - type: accuracy value: 71.61398789509079 task: type: Classification - dataset: config: default name: MTEB MedicalRetrieval revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6 split: dev type: C-MTEB/MedicalRetrieval metrics: - type: ndcg_at_10 value: 61.934999999999995 task: type: Retrieval - dataset: config: default name: MTEB MedrxivClusteringP2P revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 split: test type: mteb/medrxiv-clustering-p2p metrics: - type: v_measure value: 33.052031054565205 task: type: Clustering - dataset: config: default name: MTEB MedrxivClusteringS2S revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 split: test type: mteb/medrxiv-clustering-s2s metrics: - type: v_measure value: 31.969909524076794 task: type: Clustering - dataset: config: default name: MTEB MindSmallReranking revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 split: test type: mteb/mind_small metrics: - type: map value: 31.7530992892652 task: type: Reranking - dataset: config: fr name: MTEB MintakaRetrieval (fr) revision: efa78cc2f74bbcd21eff2261f9e13aebe40b814e split: test type: jinaai/mintakaqa metrics: - type: ndcg_at_10 value: 34.705999999999996 task: type: Retrieval - dataset: config: ar name: MTEB MultiLongDocRetrieval (ar) revision: None split: test type: Shitao/MLDR metrics: - type: ndcg_at_10 value: 55.166000000000004 task: type: Retrieval - dataset: config: de name: MTEB MultiLongDocRetrieval (de) revision: None split: test type: Shitao/MLDR metrics: - type: ndcg_at_10 value: 55.155 task: type: Retrieval - dataset: config: en name: MTEB MultiLongDocRetrieval (en) revision: None split: test type: Shitao/MLDR metrics: - type: ndcg_at_10 value: 50.993 task: type: Retrieval - dataset: config: es name: MTEB MultiLongDocRetrieval (es) revision: None split: test type: Shitao/MLDR metrics: - type: ndcg_at_10 value: 81.228 task: type: Retrieval - dataset: config: fr name: MTEB MultiLongDocRetrieval (fr) revision: None split: test type: Shitao/MLDR metrics: - type: ndcg_at_10 value: 76.19 task: type: Retrieval - dataset: config: hi name: MTEB MultiLongDocRetrieval (hi) revision: None split: test type: Shitao/MLDR metrics: - type: ndcg_at_10 value: 45.206 task: type: Retrieval - dataset: config: it name: MTEB MultiLongDocRetrieval (it) revision: None split: test type: Shitao/MLDR metrics: - type: ndcg_at_10 value: 66.741 task: type: Retrieval - dataset: config: ja name: MTEB MultiLongDocRetrieval (ja) revision: None split: test type: Shitao/MLDR metrics: - type: ndcg_at_10 value: 52.111 task: type: Retrieval - dataset: config: ko name: MTEB MultiLongDocRetrieval (ko) revision: None split: test type: Shitao/MLDR metrics: - type: ndcg_at_10 value: 46.733000000000004 task: type: Retrieval - dataset: config: pt name: MTEB MultiLongDocRetrieval (pt) revision: None split: test type: Shitao/MLDR metrics: - type: ndcg_at_10 value: 79.105 task: type: Retrieval - dataset: config: ru name: MTEB MultiLongDocRetrieval (ru) revision: None split: test type: Shitao/MLDR metrics: - type: ndcg_at_10 value: 64.21 task: type: Retrieval - dataset: config: th name: MTEB MultiLongDocRetrieval (th) revision: None split: test type: Shitao/MLDR metrics: - type: ndcg_at_10 value: 35.467 task: type: Retrieval - dataset: config: zh name: MTEB MultiLongDocRetrieval (zh) revision: None split: test type: Shitao/MLDR metrics: - type: ndcg_at_10 value: 27.419 task: type: Retrieval - dataset: config: default name: MTEB MultilingualSentiment revision: 46958b007a63fdbf239b7672c25d0bea67b5ea1a split: validation type: C-MTEB/MultilingualSentiment-classification metrics: - type: accuracy value: 61.02000000000001 task: type: Classification - dataset: config: default name: MTEB NFCorpus revision: ec0fa4fe99da2ff19ca1214b7966684033a58814 split: test type: mteb/nfcorpus metrics: - type: ndcg_at_10 value: 36.65 task: type: Retrieval - dataset: config: default name: MTEB NFCorpus-PL revision: 9a6f9567fda928260afed2de480d79c98bf0bec0 split: test type: clarin-knext/nfcorpus-pl metrics: - type: ndcg_at_10 value: 26.831 task: type: Retrieval - dataset: config: default name: MTEB NQ revision: b774495ed302d8c44a3a7ea25c90dbce03968f31 split: test type: mteb/nq metrics: - type: ndcg_at_10 value: 58.111000000000004 task: type: Retrieval - dataset: config: default name: MTEB NQ-PL revision: f171245712cf85dd4700b06bef18001578d0ca8d split: test type: clarin-knext/nq-pl metrics: - type: ndcg_at_10 value: 43.126999999999995 task: type: Retrieval - dataset: config: default name: MTEB Ocnli revision: 66e76a618a34d6d565d5538088562851e6daa7ec split: validation type: C-MTEB/OCNLI metrics: - type: cos_sim_ap value: 72.67630697316041 task: type: PairClassification - dataset: config: default name: MTEB OnlineShopping revision: e610f2ebd179a8fda30ae534c3878750a96db120 split: test type: C-MTEB/OnlineShopping-classification metrics: - type: accuracy value: 84.85000000000001 task: type: Classification - dataset: config: fr name: MTEB OpusparcusPC (fr) revision: 9e9b1f8ef51616073f47f306f7f47dd91663f86a split: test type: GEM/opusparcus metrics: - type: cos_sim_ap value: 100 task: type: PairClassification - dataset: config: default name: MTEB PAC revision: None split: test type: laugustyniak/abusive-clauses-pl metrics: - type: accuracy value: 65.99189110918043 task: type: Classification - dataset: config: default name: MTEB PAWSX revision: 9c6a90e430ac22b5779fb019a23e820b11a8b5e1 split: test type: C-MTEB/PAWSX metrics: - type: cos_sim_spearman value: 16.124364530596228 task: type: STS - dataset: config: default name: MTEB PPC revision: None split: test type: PL-MTEB/ppc-pairclassification metrics: - type: cos_sim_ap value: 92.43431057460192 task: type: PairClassification - dataset: config: default name: MTEB PSC revision: None split: test type: PL-MTEB/psc-pairclassification metrics: - type: cos_sim_ap value: 99.06090138049724 task: type: PairClassification - dataset: config: fr name: MTEB PawsX (fr) revision: 8a04d940a42cd40658986fdd8e3da561533a3646 split: test type: paws-x metrics: - type: cos_sim_ap value: 58.9314954874314 task: type: PairClassification - dataset: config: default name: MTEB PolEmo2.0-IN revision: None split: test type: PL-MTEB/polemo2_in metrics: - type: accuracy value: 69.59833795013851 task: type: Classification - dataset: config: default name: MTEB PolEmo2.0-OUT revision: None split: test type: PL-MTEB/polemo2_out metrics: - type: accuracy value: 44.73684210526315 task: type: Classification - dataset: config: default name: MTEB QBQTC revision: 790b0510dc52b1553e8c49f3d2afb48c0e5c48b7 split: test type: C-MTEB/QBQTC metrics: - type: cos_sim_spearman value: 39.36450754137984 task: type: STS - dataset: config: default name: MTEB Quora-PL revision: 0be27e93455051e531182b85e85e425aba12e9d4 split: test type: clarin-knext/quora-pl metrics: - type: ndcg_at_10 value: 80.76299999999999 task: type: Retrieval - dataset: config: default name: MTEB QuoraRetrieval revision: None split: test type: mteb/quora metrics: - type: ndcg_at_10 value: 88.022 task: type: Retrieval - dataset: config: default name: MTEB RedditClustering revision: 24640382cdbf8abc73003fb0fa6d111a705499eb split: test type: mteb/reddit-clustering metrics: - type: v_measure value: 55.719165988934385 task: type: Clustering - dataset: config: default name: MTEB RedditClusteringP2P revision: 282350215ef01743dc01b456c7f5241fa8937f16 split: test type: mteb/reddit-clustering-p2p metrics: - type: v_measure value: 62.25390069273025 task: type: Clustering - dataset: config: default name: MTEB SCIDOCS revision: None split: test type: mteb/scidocs metrics: - type: ndcg_at_10 value: 18.243000000000002 task: type: Retrieval - dataset: config: default name: MTEB SCIDOCS-PL revision: 45452b03f05560207ef19149545f168e596c9337 split: test type: clarin-knext/scidocs-pl metrics: - type: ndcg_at_10 value: 14.219000000000001 task: type: Retrieval - dataset: config: default name: MTEB SICK-E-PL revision: None split: test type: PL-MTEB/sicke-pl-pairclassification metrics: - type: cos_sim_ap value: 75.4022630307816 task: type: PairClassification - dataset: config: default name: MTEB SICK-R revision: a6ea5a8cab320b040a23452cc28066d9beae2cee split: test type: mteb/sickr-sts metrics: - type: cos_sim_spearman value: 79.34269390198548 task: type: STS - dataset: config: default name: MTEB SICK-R-PL revision: None split: test type: PL-MTEB/sickr-pl-sts metrics: - type: cos_sim_spearman value: 74.0651660446132 task: type: STS - dataset: config: default name: MTEB SICKFr revision: e077ab4cf4774a1e36d86d593b150422fafd8e8a split: test type: Lajavaness/SICK-fr metrics: - type: cos_sim_spearman value: 78.62693119733123 task: type: STS - dataset: config: default name: MTEB STS12 revision: a0d554a64d88156834ff5ae9920b964011b16384 split: test type: mteb/sts12-sts metrics: - type: cos_sim_spearman value: 77.50660544631359 task: type: STS - dataset: config: default name: MTEB STS13 revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca split: test type: mteb/sts13-sts metrics: - type: cos_sim_spearman value: 85.55415077723738 task: type: STS - dataset: config: default name: MTEB STS14 revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 split: test type: mteb/sts14-sts metrics: - type: cos_sim_spearman value: 81.67550814479077 task: type: STS - dataset: config: default name: MTEB STS15 revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 split: test type: mteb/sts15-sts metrics: - type: cos_sim_spearman value: 88.94601412322764 task: type: STS - dataset: config: default name: MTEB STS16 revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 split: test type: mteb/sts16-sts metrics: - type: cos_sim_spearman value: 84.33844259337481 task: type: STS - dataset: config: ko-ko name: MTEB STS17 (ko-ko) revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d split: test type: mteb/sts17-crosslingual-sts metrics: - type: cos_sim_spearman value: 81.58650681159105 task: type: STS - dataset: config: ar-ar name: MTEB STS17 (ar-ar) revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d split: test type: mteb/sts17-crosslingual-sts metrics: - type: cos_sim_spearman value: 78.82472265884256 task: type: STS - dataset: config: en-ar name: MTEB STS17 (en-ar) revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d split: test type: mteb/sts17-crosslingual-sts metrics: - type: cos_sim_spearman value: 76.43637938260397 task: type: STS - dataset: config: en-de name: MTEB STS17 (en-de) revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d split: test type: mteb/sts17-crosslingual-sts metrics: - type: cos_sim_spearman value: 84.71008299464059 task: type: STS - dataset: config: en-en name: MTEB STS17 (en-en) revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d split: test type: mteb/sts17-crosslingual-sts metrics: - type: cos_sim_spearman value: 88.88074713413747 task: type: STS - dataset: config: en-tr name: MTEB STS17 (en-tr) revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d split: test type: mteb/sts17-crosslingual-sts metrics: - type: cos_sim_spearman value: 76.36405640457285 task: type: STS - dataset: config: es-en name: MTEB STS17 (es-en) revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d split: test type: mteb/sts17-crosslingual-sts metrics: - type: cos_sim_spearman value: 83.84737910084762 task: type: STS - dataset: config: es-es name: MTEB STS17 (es-es) revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d split: test type: mteb/sts17-crosslingual-sts metrics: - type: cos_sim_spearman value: 87.03931621433031 task: type: STS - dataset: config: fr-en name: MTEB STS17 (fr-en) revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d split: test type: mteb/sts17-crosslingual-sts metrics: - type: cos_sim_spearman value: 84.43335591752246 task: type: STS - dataset: config: it-en name: MTEB STS17 (it-en) revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d split: test type: mteb/sts17-crosslingual-sts metrics: - type: cos_sim_spearman value: 83.85268648747021 task: type: STS - dataset: config: nl-en name: MTEB STS17 (nl-en) revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d split: test type: mteb/sts17-crosslingual-sts metrics: - type: cos_sim_spearman value: 82.45786516224341 task: type: STS - dataset: config: en name: MTEB STS22 (en) revision: eea2b4fe26a775864c896887d910b76a8098ad3f split: test type: mteb/sts22-crosslingual-sts metrics: - type: cos_sim_spearman value: 67.20227303970304 task: type: STS - dataset: config: de name: MTEB STS22 (de) revision: eea2b4fe26a775864c896887d910b76a8098ad3f split: test type: mteb/sts22-crosslingual-sts metrics: - type: cos_sim_spearman value: 60.892838305537126 task: type: STS - dataset: config: es name: MTEB STS22 (es) revision: eea2b4fe26a775864c896887d910b76a8098ad3f split: test type: mteb/sts22-crosslingual-sts metrics: - type: cos_sim_spearman value: 72.01876318464508 task: type: STS - dataset: config: pl name: MTEB STS22 (pl) revision: eea2b4fe26a775864c896887d910b76a8098ad3f split: test type: mteb/sts22-crosslingual-sts metrics: - type: cos_sim_spearman value: 42.3879320510127 task: type: STS - dataset: config: tr name: MTEB STS22 (tr) revision: eea2b4fe26a775864c896887d910b76a8098ad3f split: test type: mteb/sts22-crosslingual-sts metrics: - type: cos_sim_spearman value: 65.54048784845729 task: type: STS - dataset: config: ar name: MTEB STS22 (ar) revision: eea2b4fe26a775864c896887d910b76a8098ad3f split: test type: mteb/sts22-crosslingual-sts metrics: - type: cos_sim_spearman value: 58.55244068334867 task: type: STS - dataset: config: ru name: MTEB STS22 (ru) revision: eea2b4fe26a775864c896887d910b76a8098ad3f split: test type: mteb/sts22-crosslingual-sts metrics: - type: cos_sim_spearman value: 66.48710288440624 task: type: STS - dataset: config: zh name: MTEB STS22 (zh) revision: eea2b4fe26a775864c896887d910b76a8098ad3f split: test type: mteb/sts22-crosslingual-sts metrics: - type: cos_sim_spearman value: 66.585754901838 task: type: STS - dataset: config: fr name: MTEB STS22 (fr) revision: eea2b4fe26a775864c896887d910b76a8098ad3f split: test type: mteb/sts22-crosslingual-sts metrics: - type: cos_sim_spearman value: 81.03001290557805 task: type: STS - dataset: config: de-en name: MTEB STS22 (de-en) revision: eea2b4fe26a775864c896887d910b76a8098ad3f split: test type: mteb/sts22-crosslingual-sts metrics: - type: cos_sim_spearman value: 62.28001859884359 task: type: STS - dataset: config: es-en name: MTEB STS22 (es-en) revision: eea2b4fe26a775864c896887d910b76a8098ad3f split: test type: mteb/sts22-crosslingual-sts metrics: - type: cos_sim_spearman value: 79.64106342105019 task: type: STS - dataset: config: it name: MTEB STS22 (it) revision: eea2b4fe26a775864c896887d910b76a8098ad3f split: test type: mteb/sts22-crosslingual-sts metrics: - type: cos_sim_spearman value: 78.27915339361124 task: type: STS - dataset: config: pl-en name: MTEB STS22 (pl-en) revision: eea2b4fe26a775864c896887d910b76a8098ad3f split: test type: mteb/sts22-crosslingual-sts metrics: - type: cos_sim_spearman value: 78.28574268257462 task: type: STS - dataset: config: zh-en name: MTEB STS22 (zh-en) revision: eea2b4fe26a775864c896887d910b76a8098ad3f split: test type: mteb/sts22-crosslingual-sts metrics: - type: cos_sim_spearman value: 72.92658860751482 task: type: STS - dataset: config: es-it name: MTEB STS22 (es-it) revision: eea2b4fe26a775864c896887d910b76a8098ad3f split: test type: mteb/sts22-crosslingual-sts metrics: - type: cos_sim_spearman value: 74.83418886368217 task: type: STS - dataset: config: de-fr name: MTEB STS22 (de-fr) revision: eea2b4fe26a775864c896887d910b76a8098ad3f split: test type: mteb/sts22-crosslingual-sts metrics: - type: cos_sim_spearman value: 56.01064022625769 task: type: STS - dataset: config: de-pl name: MTEB STS22 (de-pl) revision: eea2b4fe26a775864c896887d910b76a8098ad3f split: test type: mteb/sts22-crosslingual-sts metrics: - type: cos_sim_spearman value: 53.64332829635126 task: type: STS - dataset: config: fr-pl name: MTEB STS22 (fr-pl) revision: eea2b4fe26a775864c896887d910b76a8098ad3f split: test type: mteb/sts22-crosslingual-sts metrics: - type: cos_sim_spearman value: 73.24670207647144 task: type: STS - dataset: config: default name: MTEB STSB revision: 0cde68302b3541bb8b3c340dc0644b0b745b3dc0 split: test type: C-MTEB/STSB metrics: - type: cos_sim_spearman value: 80.7157790971544 task: type: STS - dataset: config: default name: MTEB STSBenchmark revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 split: test type: mteb/stsbenchmark-sts metrics: - type: cos_sim_spearman value: 86.45763616928973 task: type: STS - dataset: config: fr name: MTEB STSBenchmarkMultilingualSTS (fr) revision: 93d57ef91790589e3ce9c365164337a8a78b7632 split: test type: stsb_multi_mt metrics: - type: cos_sim_spearman value: 84.4335500335282 task: type: STS - dataset: config: default name: MTEB SciDocsRR revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab split: test type: mteb/scidocs-reranking metrics: - type: map value: 84.15276484499303 task: type: Reranking - dataset: config: default name: MTEB SciFact revision: 0228b52cf27578f30900b9e5271d331663a030d7 split: test type: mteb/scifact metrics: - type: ndcg_at_10 value: 73.433 task: type: Retrieval - dataset: config: default name: MTEB SciFact-PL revision: 47932a35f045ef8ed01ba82bf9ff67f6e109207e split: test type: clarin-knext/scifact-pl metrics: - type: ndcg_at_10 value: 58.919999999999995 task: type: Retrieval - dataset: config: default name: MTEB SprintDuplicateQuestions revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 split: test type: mteb/sprintduplicatequestions-pairclassification metrics: - type: cos_sim_ap value: 95.40564890916419 task: type: PairClassification - dataset: config: default name: MTEB StackExchangeClustering revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 split: test type: mteb/stackexchange-clustering metrics: - type: v_measure value: 63.41856697730145 task: type: Clustering - dataset: config: default name: MTEB StackExchangeClusteringP2P revision: 815ca46b2622cec33ccafc3735d572c266efdb44 split: test type: mteb/stackexchange-clustering-p2p metrics: - type: v_measure value: 31.709285904909112 task: type: Clustering - dataset: config: default name: MTEB StackOverflowDupQuestions revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 split: test type: mteb/stackoverflowdupquestions-reranking metrics: - type: map value: 52.09341030060322 task: type: Reranking - dataset: config: default name: MTEB SummEval revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c split: test type: mteb/summeval metrics: - type: cos_sim_spearman value: 30.58262517835034 task: type: Summarization - dataset: config: default name: MTEB SummEvalFr revision: b385812de6a9577b6f4d0f88c6a6e35395a94054 split: test type: lyon-nlp/summarization-summeval-fr-p2p metrics: - type: cos_sim_spearman value: 29.744542072951358 task: type: Summarization - dataset: config: default name: MTEB SyntecReranking revision: b205c5084a0934ce8af14338bf03feb19499c84d split: test type: lyon-nlp/mteb-fr-reranking-syntec-s2p metrics: - type: map value: 88.03333333333333 task: type: Reranking - dataset: config: default name: MTEB SyntecRetrieval revision: 77f7e271bf4a92b24fce5119f3486b583ca016ff split: test type: lyon-nlp/mteb-fr-retrieval-syntec-s2p metrics: - type: ndcg_at_10 value: 83.043 task: type: Retrieval - dataset: config: default name: MTEB T2Reranking revision: 76631901a18387f85eaa53e5450019b87ad58ef9 split: dev type: C-MTEB/T2Reranking metrics: - type: map value: 67.08577894804324 task: type: Reranking - dataset: config: default name: MTEB T2Retrieval revision: 8731a845f1bf500a4f111cf1070785c793d10e64 split: dev type: C-MTEB/T2Retrieval metrics: - type: ndcg_at_10 value: 84.718 task: type: Retrieval - dataset: config: default name: MTEB TNews revision: 317f262bf1e6126357bbe89e875451e4b0938fe4 split: validation type: C-MTEB/TNews-classification metrics: - type: accuracy value: 48.726 task: type: Classification - dataset: config: default name: MTEB TRECCOVID revision: None split: test type: mteb/trec-covid metrics: - type: ndcg_at_10 value: 57.56 task: type: Retrieval - dataset: config: default name: MTEB TRECCOVID-PL revision: 81bcb408f33366c2a20ac54adafad1ae7e877fdd split: test type: clarin-knext/trec-covid-pl metrics: - type: ndcg_at_10 value: 59.355999999999995 task: type: Retrieval - dataset: config: sqi-eng name: MTEB Tatoeba (sqi-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 82.765 task: type: BitextMining - dataset: config: fry-eng name: MTEB Tatoeba (fry-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 73.69942196531792 task: type: BitextMining - dataset: config: kur-eng name: MTEB Tatoeba (kur-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 32.86585365853657 task: type: BitextMining - dataset: config: tur-eng name: MTEB Tatoeba (tur-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 95.81666666666666 task: type: BitextMining - dataset: config: deu-eng name: MTEB Tatoeba (deu-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 97.75 task: type: BitextMining - dataset: config: nld-eng name: MTEB Tatoeba (nld-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 93.78333333333335 task: type: BitextMining - dataset: config: ron-eng name: MTEB Tatoeba (ron-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 90.72333333333333 task: type: BitextMining - dataset: config: ang-eng name: MTEB Tatoeba (ang-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 42.45202558635395 task: type: BitextMining - dataset: config: ido-eng name: MTEB Tatoeba (ido-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 77.59238095238095 task: type: BitextMining - dataset: config: jav-eng name: MTEB Tatoeba (jav-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 35.69686411149825 task: type: BitextMining - dataset: config: isl-eng name: MTEB Tatoeba (isl-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 82.59333333333333 task: type: BitextMining - dataset: config: slv-eng name: MTEB Tatoeba (slv-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 84.1456922987907 task: type: BitextMining - dataset: config: cym-eng name: MTEB Tatoeba (cym-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 52.47462133594857 task: type: BitextMining - dataset: config: kaz-eng name: MTEB Tatoeba (kaz-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 67.62965440356746 task: type: BitextMining - dataset: config: est-eng name: MTEB Tatoeba (est-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 79.48412698412699 task: type: BitextMining - dataset: config: heb-eng name: MTEB Tatoeba (heb-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 75.85 task: type: BitextMining - dataset: config: gla-eng name: MTEB Tatoeba (gla-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 27.32600866497127 task: type: BitextMining - dataset: config: mar-eng name: MTEB Tatoeba (mar-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 84.38 task: type: BitextMining - dataset: config: lat-eng name: MTEB Tatoeba (lat-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 42.98888712165028 task: type: BitextMining - dataset: config: bel-eng name: MTEB Tatoeba (bel-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 85.55690476190476 task: type: BitextMining - dataset: config: pms-eng name: MTEB Tatoeba (pms-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 46.68466031323174 task: type: BitextMining - dataset: config: gle-eng name: MTEB Tatoeba (gle-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 32.73071428571428 task: type: BitextMining - dataset: config: pes-eng name: MTEB Tatoeba (pes-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 88.26333333333334 task: type: BitextMining - dataset: config: nob-eng name: MTEB Tatoeba (nob-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 96.61666666666666 task: type: BitextMining - dataset: config: bul-eng name: MTEB Tatoeba (bul-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 91.30666666666666 task: type: BitextMining - dataset: config: cbk-eng name: MTEB Tatoeba (cbk-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 70.03714285714285 task: type: BitextMining - dataset: config: hun-eng name: MTEB Tatoeba (hun-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 89.09 task: type: BitextMining - dataset: config: uig-eng name: MTEB Tatoeba (uig-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 59.570476190476185 task: type: BitextMining - dataset: config: rus-eng name: MTEB Tatoeba (rus-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 92.9 task: type: BitextMining - dataset: config: spa-eng name: MTEB Tatoeba (spa-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 97.68333333333334 task: type: BitextMining - dataset: config: hye-eng name: MTEB Tatoeba (hye-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 80.40880503144653 task: type: BitextMining - dataset: config: tel-eng name: MTEB Tatoeba (tel-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 89.7008547008547 task: type: BitextMining - dataset: config: afr-eng name: MTEB Tatoeba (afr-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 81.84833333333333 task: type: BitextMining - dataset: config: mon-eng name: MTEB Tatoeba (mon-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 71.69696969696969 task: type: BitextMining - dataset: config: arz-eng name: MTEB Tatoeba (arz-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 55.76985790822269 task: type: BitextMining - dataset: config: hrv-eng name: MTEB Tatoeba (hrv-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 91.66666666666666 task: type: BitextMining - dataset: config: nov-eng name: MTEB Tatoeba (nov-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 68.36668519547896 task: type: BitextMining - dataset: config: gsw-eng name: MTEB Tatoeba (gsw-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 36.73992673992674 task: type: BitextMining - dataset: config: nds-eng name: MTEB Tatoeba (nds-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 63.420952380952365 task: type: BitextMining - dataset: config: ukr-eng name: MTEB Tatoeba (ukr-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 91.28999999999999 task: type: BitextMining - dataset: config: uzb-eng name: MTEB Tatoeba (uzb-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 40.95392490046146 task: type: BitextMining - dataset: config: lit-eng name: MTEB Tatoeba (lit-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 77.58936507936508 task: type: BitextMining - dataset: config: ina-eng name: MTEB Tatoeba (ina-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 91.28999999999999 task: type: BitextMining - dataset: config: lfn-eng name: MTEB Tatoeba (lfn-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 63.563650793650794 task: type: BitextMining - dataset: config: zsm-eng name: MTEB Tatoeba (zsm-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 94.35 task: type: BitextMining - dataset: config: ita-eng name: MTEB Tatoeba (ita-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 91.43 task: type: BitextMining - dataset: config: cmn-eng name: MTEB Tatoeba (cmn-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 95.73333333333332 task: type: BitextMining - dataset: config: lvs-eng name: MTEB Tatoeba (lvs-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 79.38666666666667 task: type: BitextMining - dataset: config: glg-eng name: MTEB Tatoeba (glg-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 89.64 task: type: BitextMining - dataset: config: ceb-eng name: MTEB Tatoeba (ceb-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 21.257184628237262 task: type: BitextMining - dataset: config: bre-eng name: MTEB Tatoeba (bre-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 13.592316017316017 task: type: BitextMining - dataset: config: ben-eng name: MTEB Tatoeba (ben-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 73.22666666666666 task: type: BitextMining - dataset: config: swg-eng name: MTEB Tatoeba (swg-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 51.711309523809526 task: type: BitextMining - dataset: config: arq-eng name: MTEB Tatoeba (arq-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 24.98790634904795 task: type: BitextMining - dataset: config: kab-eng name: MTEB Tatoeba (kab-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 17.19218192918193 task: type: BitextMining - dataset: config: fra-eng name: MTEB Tatoeba (fra-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 93.26666666666667 task: type: BitextMining - dataset: config: por-eng name: MTEB Tatoeba (por-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 94.57333333333334 task: type: BitextMining - dataset: config: tat-eng name: MTEB Tatoeba (tat-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 42.35127206127206 task: type: BitextMining - dataset: config: oci-eng name: MTEB Tatoeba (oci-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 51.12318903318903 task: type: BitextMining - dataset: config: pol-eng name: MTEB Tatoeba (pol-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 94.89999999999999 task: type: BitextMining - dataset: config: war-eng name: MTEB Tatoeba (war-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 23.856320290390055 task: type: BitextMining - dataset: config: aze-eng name: MTEB Tatoeba (aze-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 79.52833333333334 task: type: BitextMining - dataset: config: vie-eng name: MTEB Tatoeba (vie-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 95.93333333333334 task: type: BitextMining - dataset: config: nno-eng name: MTEB Tatoeba (nno-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 90.75333333333333 task: type: BitextMining - dataset: config: cha-eng name: MTEB Tatoeba (cha-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 30.802919708029197 task: type: BitextMining - dataset: config: mhr-eng name: MTEB Tatoeba (mhr-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 15.984076294076294 task: type: BitextMining - dataset: config: dan-eng name: MTEB Tatoeba (dan-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 91.82666666666667 task: type: BitextMining - dataset: config: ell-eng name: MTEB Tatoeba (ell-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 91.9 task: type: BitextMining - dataset: config: amh-eng name: MTEB Tatoeba (amh-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 76.36054421768706 task: type: BitextMining - dataset: config: pam-eng name: MTEB Tatoeba (pam-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 9.232711399711398 task: type: BitextMining - dataset: config: hsb-eng name: MTEB Tatoeba (hsb-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 45.640803181175855 task: type: BitextMining - dataset: config: srp-eng name: MTEB Tatoeba (srp-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 86.29 task: type: BitextMining - dataset: config: epo-eng name: MTEB Tatoeba (epo-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 88.90833333333332 task: type: BitextMining - dataset: config: kzj-eng name: MTEB Tatoeba (kzj-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 11.11880248978075 task: type: BitextMining - dataset: config: awa-eng name: MTEB Tatoeba (awa-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 48.45839345839346 task: type: BitextMining - dataset: config: fao-eng name: MTEB Tatoeba (fao-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 65.68157033805888 task: type: BitextMining - dataset: config: mal-eng name: MTEB Tatoeba (mal-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 94.63852498786997 task: type: BitextMining - dataset: config: ile-eng name: MTEB Tatoeba (ile-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 81.67904761904761 task: type: BitextMining - dataset: config: bos-eng name: MTEB Tatoeba (bos-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 89.35969868173258 task: type: BitextMining - dataset: config: cor-eng name: MTEB Tatoeba (cor-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 5.957229437229437 task: type: BitextMining - dataset: config: cat-eng name: MTEB Tatoeba (cat-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 91.50333333333333 task: type: BitextMining - dataset: config: eus-eng name: MTEB Tatoeba (eus-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 63.75498778998778 task: type: BitextMining - dataset: config: yue-eng name: MTEB Tatoeba (yue-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 82.99190476190476 task: type: BitextMining - dataset: config: swe-eng name: MTEB Tatoeba (swe-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 92.95 task: type: BitextMining - dataset: config: dtp-eng name: MTEB Tatoeba (dtp-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 9.054042624042623 task: type: BitextMining - dataset: config: kat-eng name: MTEB Tatoeba (kat-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 72.77064981488574 task: type: BitextMining - dataset: config: jpn-eng name: MTEB Tatoeba (jpn-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 93.14 task: type: BitextMining - dataset: config: csb-eng name: MTEB Tatoeba (csb-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 29.976786498525627 task: type: BitextMining - dataset: config: xho-eng name: MTEB Tatoeba (xho-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 67.6525821596244 task: type: BitextMining - dataset: config: orv-eng name: MTEB Tatoeba (orv-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 33.12964812964813 task: type: BitextMining - dataset: config: ind-eng name: MTEB Tatoeba (ind-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 92.30666666666666 task: type: BitextMining - dataset: config: tuk-eng name: MTEB Tatoeba (tuk-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 34.36077879427633 task: type: BitextMining - dataset: config: max-eng name: MTEB Tatoeba (max-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 52.571845212690285 task: type: BitextMining - dataset: config: swh-eng name: MTEB Tatoeba (swh-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 58.13107263107262 task: type: BitextMining - dataset: config: hin-eng name: MTEB Tatoeba (hin-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 93.33333333333333 task: type: BitextMining - dataset: config: dsb-eng name: MTEB Tatoeba (dsb-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 42.87370133925458 task: type: BitextMining - dataset: config: ber-eng name: MTEB Tatoeba (ber-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 20.394327616827614 task: type: BitextMining - dataset: config: tam-eng name: MTEB Tatoeba (tam-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 84.29967426710098 task: type: BitextMining - dataset: config: slk-eng name: MTEB Tatoeba (slk-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 88.80666666666667 task: type: BitextMining - dataset: config: tgl-eng name: MTEB Tatoeba (tgl-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 67.23062271062273 task: type: BitextMining - dataset: config: ast-eng name: MTEB Tatoeba (ast-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 78.08398950131233 task: type: BitextMining - dataset: config: mkd-eng name: MTEB Tatoeba (mkd-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 77.85166666666666 task: type: BitextMining - dataset: config: khm-eng name: MTEB Tatoeba (khm-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 67.63004001231148 task: type: BitextMining - dataset: config: ces-eng name: MTEB Tatoeba (ces-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 89.77000000000001 task: type: BitextMining - dataset: config: tzl-eng name: MTEB Tatoeba (tzl-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 40.2654503616042 task: type: BitextMining - dataset: config: urd-eng name: MTEB Tatoeba (urd-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 83.90333333333334 task: type: BitextMining - dataset: config: ara-eng name: MTEB Tatoeba (ara-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 77.80666666666666 task: type: BitextMining - dataset: config: kor-eng name: MTEB Tatoeba (kor-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 84.08 task: type: BitextMining - dataset: config: yid-eng name: MTEB Tatoeba (yid-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 60.43098607367475 task: type: BitextMining - dataset: config: fin-eng name: MTEB Tatoeba (fin-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 88.19333333333333 task: type: BitextMining - dataset: config: tha-eng name: MTEB Tatoeba (tha-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 90.55352798053529 task: type: BitextMining - dataset: config: wuu-eng name: MTEB Tatoeba (wuu-eng) revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 split: test type: mteb/tatoeba-bitext-mining metrics: - type: f1 value: 88.44999999999999 task: type: BitextMining - dataset: config: default name: MTEB ThuNewsClusteringP2P revision: 5798586b105c0434e4f0fe5e767abe619442cf93 split: test type: C-MTEB/ThuNewsClusteringP2P metrics: - type: v_measure value: 57.25416429643288 task: type: Clustering - dataset: config: default name: MTEB ThuNewsClusteringS2S revision: 8a8b2caeda43f39e13c4bc5bea0f8a667896e10d split: test type: C-MTEB/ThuNewsClusteringS2S metrics: - type: v_measure value: 56.616646560243524 task: type: Clustering - dataset: config: default name: MTEB Touche2020 revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f split: test type: mteb/touche2020 metrics: - type: ndcg_at_10 value: 22.819 task: type: Retrieval - dataset: config: default name: MTEB ToxicConversationsClassification revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c split: test type: mteb/toxic_conversations_50k metrics: - type: accuracy value: 71.02579999999999 task: type: Classification - dataset: config: default name: MTEB TweetSentimentExtractionClassification revision: d604517c81ca91fe16a244d1248fc021f9ecee7a split: test type: mteb/tweet_sentiment_extraction metrics: - type: accuracy value: 57.60045274476514 task: type: Classification - dataset: config: default name: MTEB TwentyNewsgroupsClustering revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 split: test type: mteb/twentynewsgroups-clustering metrics: - type: v_measure value: 50.346666699466205 task: type: Clustering - dataset: config: default name: MTEB TwitterSemEval2015 revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 split: test type: mteb/twittersemeval2015-pairclassification metrics: - type: cos_sim_ap value: 71.88199004440489 task: type: PairClassification - dataset: config: default name: MTEB TwitterURLCorpus revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf split: test type: mteb/twitterurlcorpus-pairclassification metrics: - type: cos_sim_ap value: 85.41587779677383 task: type: PairClassification - dataset: config: default name: MTEB VideoRetrieval revision: 58c2597a5943a2ba48f4668c3b90d796283c5639 split: dev type: C-MTEB/VideoRetrieval metrics: - type: ndcg_at_10 value: 72.792 task: type: Retrieval - dataset: config: default name: MTEB Waimai revision: 339287def212450dcaa9df8c22bf93e9980c7023 split: test type: C-MTEB/waimai-classification metrics: - type: accuracy value: 82.58000000000001 task: type: Classification - dataset: config: fr name: MTEB XPQARetrieval (fr) revision: c99d599f0a6ab9b85b065da6f9d94f9cf731679f split: test type: jinaai/xpqa metrics: - type: ndcg_at_10 value: 67.327 task: type: Retrieval tags: - mteb - multilingual - sentence-similarity - onnx - teradata --- ***See Disclaimer below*** ---- # A Teradata Vantage compatible Embeddings Model # Alibaba-NLP/gte-multilingual-base ## Overview of this Model An Embedding Model which maps text (sentence/ paragraphs) into a vector. The [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) model well known for its effectiveness in capturing semantic meanings in text data. It's a state-of-the-art model trained on a large corpus, capable of generating high-quality text embeddings. - 305.37M params (Sizes in ONNX format - "fp32": 1197.36MB, "int8": 324.17MB, "uint8": 324.17MB) - 8192 maximum input tokens - 768 dimensions of output vector - Licence: apache-2.0. The released models can be used for commercial purposes free of charge. - Reference to Original Model: https://huggingface.co/Alibaba-NLP/gte-multilingual-base ## Quickstart: Deploying this Model in Teradata Vantage We have pre-converted the model into the ONNX format compatible with BYOM 6.0, eliminating the need for manual conversion. **Note:** Ensure you have access to a Teradata Database with BYOM 6.0 installed. To get started, clone the pre-converted model directly from the Teradata HuggingFace repository. ```python import teradataml as tdml import getpass from huggingface_hub import hf_hub_download model_name = "gte-multilingual-base" number_dimensions_output = 768 model_file_name = "model.onnx" # Step 1: Download Model from Teradata HuggingFace Page hf_hub_download(repo_id=f"Teradata/{model_name}", filename=f"onnx/{model_file_name}", local_dir="./") hf_hub_download(repo_id=f"Teradata/{model_name}", filename=f"tokenizer.json", local_dir="./") # Step 2: Create Connection to Vantage tdml.create_context(host = input('enter your hostname'), username=input('enter your username'), password = getpass.getpass("enter your password")) # Step 3: Load Models into Vantage # a) Embedding model tdml.save_byom(model_id = model_name, # must be unique in the models table model_file = f"onnx/{model_file_name}", table_name = 'embeddings_models' ) # b) Tokenizer tdml.save_byom(model_id = model_name, # must be unique in the models table model_file = 'tokenizer.json', table_name = 'embeddings_tokenizers') # Step 4: Test ONNXEmbeddings Function # Note that ONNXEmbeddings expects the 'payload' column to be 'txt'. # If it has got a different name, just rename it in a subquery/CTE. input_table = "emails.emails" embeddings_query = f""" SELECT * from mldb.ONNXEmbeddings( on {input_table} as InputTable on (select * from embeddings_models where model_id = '{model_name}') as ModelTable DIMENSION on (select model as tokenizer from embeddings_tokenizers where model_id = '{model_name}') as TokenizerTable DIMENSION using Accumulate('id', 'txt') ModelOutputTensor('sentence_embedding') EnableMemoryCheck('false') OutputFormat('FLOAT32({number_dimensions_output})') OverwriteCachedModel('true') ) a """ DF_embeddings = tdml.DataFrame.from_query(embeddings_query) DF_embeddings ``` ## What Can I Do with the Embeddings? Teradata Vantage includes pre-built in-database functions to process embeddings further. Explore the following examples: - **Semantic Clustering with TD_KMeans:** [Semantic Clustering Python Notebook](https://github.com/Teradata/jupyter-demos/blob/main/UseCases/Language_Models_InVantage/Semantic_Clustering_Python.ipynb) - **Semantic Distance with TD_VectorDistance:** [Semantic Similarity Python Notebook](https://github.com/Teradata/jupyter-demos/blob/main/UseCases/Language_Models_InVantage/Semantic_Similarity_Python.ipynb) - **RAG-Based Application with TD_VectorDistance:** [RAG and Bedrock Query PDF Notebook](https://github.com/Teradata/jupyter-demos/blob/main/UseCases/Language_Models_InVantage/RAG_and_Bedrock_QueryPDF.ipynb) ## Deep Dive into Model Conversion to ONNX **The steps below outline how we converted the open-source Hugging Face model into an ONNX file compatible with the in-database ONNXEmbeddings function.** You do not need to perform these steps—they are provided solely for documentation and transparency. However, they may be helpful if you wish to convert another model to the required format. ### Part 1. Importing and Converting Model using optimum We start by importing the pre-trained [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) model from Hugging Face. To enhance performance and ensure compatibility with various execution environments, we'll use the [Optimum](https://github.com/huggingface/optimum) utility to convert the model into the ONNX (Open Neural Network Exchange) format. After conversion to ONNX, we are fixing the opset in the ONNX file for compatibility with ONNX runtime used in Teradata Vantage We are generating ONNX files for multiple different precisions: fp32, int8, uint8 You can find the detailed conversion steps in the file [convert.py](./convert.py) ### Part 2. Running the model in Python with onnxruntime & compare results Once the fixes are applied, we proceed to test the correctness of the ONNX model by calculating cosine similarity between two texts using native SentenceTransformers and ONNX runtime, comparing the results. If the results are identical, it confirms that the ONNX model gives the same result as the native models, validating its correctness and suitability for further use in the database. ```python import onnxruntime as rt from sentence_transformers.util import cos_sim from sentence_transformers import SentenceTransformer import transformers sentences_1 = 'How is the weather today?' sentences_2 = 'What is the current weather like today?' # Calculate ONNX result tokenizer = transformers.AutoTokenizer.from_pretrained("Alibaba-NLP/gte-multilingual-base") predef_sess = rt.InferenceSession("onnx/model.onnx") enc1 = tokenizer(sentences_1) embeddings_1_onnx = predef_sess.run(None, {"input_ids": [enc1.input_ids], "attention_mask": [enc1.attention_mask]}) enc2 = tokenizer(sentences_2) embeddings_2_onnx = predef_sess.run(None, {"input_ids": [enc2.input_ids], "attention_mask": [enc2.attention_mask]}) # Calculate embeddings with SentenceTransformer model = SentenceTransformer(model_id, trust_remote_code=True) embeddings_1_sentence_transformer = model.encode(sentences_1, normalize_embeddings=True, trust_remote_code=True) embeddings_2_sentence_transformer = model.encode(sentences_2, normalize_embeddings=True, trust_remote_code=True) # Compare results print("Cosine similiarity for embeddings calculated with ONNX:" + str(cos_sim(embeddings_1_onnx[1][0], embeddings_2_onnx[1][0]))) print("Cosine similiarity for embeddings calculated with SentenceTransformer:" + str(cos_sim(embeddings_1_sentence_transformer, embeddings_2_sentence_transformer))) ``` You can find the detailed ONNX vs. SentenceTransformer result comparison steps in the file [test_local.py](./test_local.py) ----- DISCLAIMER: The content herein (“Content”) is provided “AS IS” and is not covered by any Teradata Operations, Inc. and its affiliates (“Teradata”) agreements. Its listing here does not constitute certification or endorsement by Teradata. To the extent any of the Content contains or is related to any artificial intelligence (“AI”) or other language learning models (“Models”) that interoperate with the products and services of Teradata, by accessing, bringing, deploying or using such Models, you acknowledge and agree that you are solely responsible for ensuring compliance with all applicable laws, regulations, and restrictions governing the use, deployment, and distribution of AI technologies. This includes, but is not limited to, AI Diffusion Rules, European Union AI Act, AI-related laws and regulations, privacy laws, export controls, and financial or sector-specific regulations. While Teradata may provide support, guidance, or assistance in the deployment or implementation of Models to interoperate with Teradata’s products and/or services, you remain fully responsible for ensuring that your Models, data, and applications comply with all relevant legal and regulatory obligations. Our assistance does not constitute legal or regulatory approval, and Teradata disclaims any liability arising from non-compliance with applicable laws. You must determine the suitability of the Models for any purpose. Given the probabilistic nature of machine learning and modeling, the use of the Models may in some situations result in incorrect output that does not accurately reflect the action generated. You should evaluate the accuracy of any output as appropriate for your use case, including by using human review of the output.