import glob import re import shutil import sys import accelerate import torch from configuration_glm4_shared_moe import Glm4SharedMoeConfig from safetensors import safe_open from transformers.models.glm4_moe.configuration_glm4_moe import Glm4MoeConfig from transformers.models.glm4_moe.modeling_glm4_moe import Glm4MoeForCausalLM input_model = sys.argv[1] output_model_path = sys.argv[2] cfg_shared_moe = Glm4SharedMoeConfig.from_pretrained(input_model) cfg_standard_moe = Glm4MoeConfig( architectures=["Glm4MoeForCausalLM"], vocab_size=cfg_shared_moe.vocab_size, hidden_size=cfg_shared_moe.hidden_size, intermediate_size=cfg_shared_moe.intermediate_size, num_hidden_layers=cfg_shared_moe.num_hidden_layers, num_attention_heads=cfg_shared_moe.num_attention_heads, num_key_value_heads=cfg_shared_moe.num_key_value_heads, hidden_act=cfg_shared_moe.hidden_act, max_position_embeddings=cfg_shared_moe.max_position_embeddings, initializer_range=cfg_shared_moe.initializer_range, rms_norm_eps=cfg_shared_moe.rms_norm_eps, use_cache=cfg_shared_moe.use_cache, tie_word_embeddings=cfg_shared_moe.tie_word_embeddings, rope_theta=cfg_shared_moe.rope_theta, rope_scaling=cfg_shared_moe.rope_scaling, attention_bias=cfg_shared_moe.attention_bias, attention_dropout=cfg_shared_moe.attention_dropout, moe_intermediate_size=cfg_shared_moe.moe_intermediate_size, num_experts_per_tok=cfg_shared_moe.num_experts_per_tok, n_routed_experts=cfg_shared_moe.n_routed_experts, norm_topk_prob=cfg_shared_moe.norm_topk_prob, head_dim=cfg_shared_moe.head_dim, n_group=cfg_shared_moe.n_group, n_shared_experts=cfg_shared_moe.n_shared_experts, first_k_dense_replace=cfg_shared_moe.first_k_dense_replace, partial_rotary_factor=cfg_shared_moe.partial_rotary_factor, routed_scaling_factor=cfg_shared_moe.routed_scaling_factor, topk_group=cfg_shared_moe.topk_group, use_qk_norm=cfg_shared_moe.use_qk_norm ) num_experts = cfg_standard_moe.n_routed_experts with accelerate.init_empty_weights(): model_standard_moe = Glm4MoeForCausalLM(cfg_shared_moe) model_standard_moe = model_standard_moe.to(torch.bfloat16) new_state_dict = {} pattern = f"{input_model}/model-*-of-*.safetensors" files = sorted(glob.glob(pattern)) if len(files) == 0: raise FileNotFoundError tensors = {} for file_path in files: print(f"processing {file_path}") with safe_open(file_path, framework="pt", device="cpu") as f: for key in f.keys(): tensor = f.get_tensor(key) tensors[key] = tensor for key in tensors: if "moe_mlp" not in key: new_state_dict[key] = tensors[key] elif "moe_mlp.output_experts" in key: layer_num = int(re.search(r"\d+", key).group()) for i, tensor in enumerate(torch.unbind(tensors[key])): new_state_dict[ f"model.layers.{layer_num}.mlp.experts.{i}.down_proj.weight" ] = tensor.contiguous() elif "moe_mlp.experts" in key: layer_num = int(re.search(r"\d+", key).group()) for i, tensor in enumerate(torch.unbind(tensors[key])): ( new_state_dict[ f"model.layers.{layer_num}.mlp.experts.{i}.up_proj.weight" ], new_state_dict[ f"model.layers.{layer_num}.mlp.experts.{i}.gate_proj.weight" ], ) = torch.chunk(tensor, 2, dim=0) model_standard_moe.load_state_dict(new_state_dict, strict=True, assign=True) model_standard_moe.save_pretrained(output_model_path) cfg_standard_moe.save_pretrained(output_model_path) for i in ["tokenizer_config.json", "tokenizer.json", "chat_template.jinja"]: shutil.copy(input_model + "/" + i, output_model_path + "/" + i)