File size: 8,461 Bytes
6cdd194 19c9a07 6cdd194 19c9a07 6cdd194 19c9a07 6cdd194 19c9a07 6cdd194 19c9a07 2d6dc41 19c9a07 6cdd194 19c9a07 da3874c 19c9a07 c3d285d 19c9a07 6cdd194 19c9a07 e402267 6cdd194 e402267 6cdd194 19c9a07 6cdd194 19c9a07 6cdd194 19c9a07 6cdd194 19c9a07 6cdd194 19c9a07 6cdd194 19c9a07 6cdd194 19c9a07 6cdd194 c3d285d 6cdd194 c3d285d 6cdd194 c3d285d 6cdd194 c3d285d e402267 6cdd194 e402267 6cdd194 1dc10a1 a288d84 6cdd194 e402267 6cdd194 e402267 6cdd194 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
---
language:
- pt
license: cc-by-nc-nd-4.0
colorTo: blue
sdk: streamlit
app_port: 8501
tags:
- streamlit
- text-classification
- multi-label-classification
- gradient-boosting
- active-learning
- bertimbau
- municipal-documents
- meeting-minutes
library_name: transformers
base_model:
- neuralmind/bert-base-portuguese-cased
---
# Council Topics Classifier: Multi-Label Topic Classification for Portuguese Council Texts Discussion Subjects
## Model Description
**Council Topics Classifier** is an ensemble machine learning system specialized in **multi-label topic classification** for Portuguese municipal council meeting minutes subjects. The model combines Gradient Boosting with Active Learning and BERTimbau embeddings to identify multiple simultaneous topics within municipal discussion subjects, making it particularly effective for categorizing complex governmental content.
🚀 **Try out the model:** [Demo Council Topics Classifier PT](https://huggingface.co/spaces/anonymous12321/Council_Topics_Classifier_PT)
## Key Features
- 🎯 **Specialized for Municipal Topics**: Trained on Portuguese council meeting minutes discussion subjects with domain-specific preprocessing
- 🏆 **Advanced Ensemble**: Combines LogisticRegression + 3x GradientBoosting models with adaptive weighting
- 🧠 **Deep + Classical Features**: Merges TF-IDF vectors (10k features) with BERTimbau embeddings (768 dims)
- 📊 **Multi-Label Classification**: Identifies multiple co-occurring topics per subject
- ⚡ **Optimized Thresholds**: Dynamic per-label thresholds tuned on validation data
- 🔄 **Active Learning Ready**: Adaptive weighting based on label frequency for continuous improvement
## Model Details
- **Architecture**: Ensemble (LogisticRegression + 3x GradientBoosting)
- **Base Models**:
- 1x LogisticRegression (L2 regularization, C=1.0)
- GradientBoosting Model #1 (n_estimators=100, max_depth=3, learning_rate=0.1)
- GradientBoosting Model #2 (n_estimators=150, max_depth=5, learning_rate=0.05)
- GradientBoosting Model #3 (n_estimators=200, max_depth=4, learning_rate=0.1)
- **Feature Extractor**: TF-IDF (n-grams 1-3, 10k features, Portuguese stopwords)
- **Embedding Model**: neuralmind/bert-base-portuguese-cased (BERTimbau)
- **Total Features**: 10,768 dimensions (10k TF-IDF + 768 BERT)
- **Training Method**: One-vs-Rest with class weighting + Focal Loss
- **Optimization**: Adaptive ensemble weighting by label frequency
- **Framework**: Scikit-learn + PyTorch + Transformers
## How It Works
The model processes Portuguese municipal texts through a sophisticated pipeline to identify relevant topics:
1. **Portuguese-Specific Preprocessing**
- Lowercasing and normalization
- Municipal entity recognition (e.g., "Câmara Municipal" → "camara_municipal")
- Legal term preservation (e.g., "Art. 5" → "artigo_5")
- Number and currency standardization
2. **Dual Feature Extraction**
- **TF-IDF**: Captures term frequency patterns with n-grams (1-3)
- **BERTimbau**: Provides contextual semantic embeddings
3. **Ensemble Prediction**
- Each base model predicts probabilities for all labels
- Adaptive weighted combination based on label rarity:
- **Rare labels**: Higher LogisticRegression weight
- **Common labels**: Higher GradientBoosting weight
4. **Dynamic Thresholding**
- Per-label optimal thresholds (not fixed 0.5)
- Optimized for F1-score on validation set
## Usage
```python
import numpy as np
from joblib import load
from transformers import AutoTokenizer, AutoModel
import torch
# Load models
models_dir = 'models'
tfidf = load(f'{models_dir}/tfidf_vectorizer.joblib')
mlb = load(f'{models_dir}/mlb_encoder.joblib')
optimal_thresholds = np.load(f'{models_dir}/optimal_thresholds.npy')
adaptive_weights = np.load(f'{models_dir}/adaptive_weights.npy')
logistic_model = load(f'{models_dir}/logistic_model.joblib')
gb_models = load(f'{models_dir}/gb_models.joblib')
# Load BERTimbau
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = AutoTokenizer.from_pretrained("neuralmind/bert-base-portuguese-cased")
bert_model = AutoModel.from_pretrained("neuralmind/bert-base-portuguese-cased").to(device)
# Preprocess text
text = "A Câmara Municipal aprovou o orçamento de 2024..."
# (apply smart_preprocess function - see demo source code)
# Extract features
tfidf_features = tfidf.transform([text])
# (extract BERT embeddings - see demo source code)
# Combine features and predict
X_combined = np.hstack([tfidf_features.toarray(), bert_embeddings])
# Get ensemble predictions
logistic_proba = logistic_model.predict_proba(X_combined)
# (apply GB models and adaptive weighting - see demo source code)
# Apply optimal thresholds
predictions = (ensemble_proba >= optimal_thresholds).astype(int)
predicted_labels = mlb.inverse_transform(predictions)
print(f"Predicted Topics: {predicted_labels}")
```
## Dataset
The model was trained on a curated dataset of Portuguese municipal council meeting minutes:
- **Documents**: 2,500+ meeting minutes discussion subjects
- **Time Period**: 2021-2024
- **Source**: Portuguese municipalities (anonymized)
- **Labels**: 22 topic categories
- **Annotation**: Multi-label (avg. 1.69 labels per document)
- **Split**: 60% train / 20% validation / 20% test
## Categories
The model classifies topics into 22 Portuguese administrative categories:
| Category | Portuguese Name |
|----------|-----------------|
| General Administration | Administração Geral, Finanças e Recursos Humanos |
| Environment | Ambiente |
| Economic Activities | Atividades Económicas |
| Social Action | Ação Social |
| Science | Ciência |
| Communication | Comunicação e Relações Públicas |
| External Cooperation | Cooperação Externa e Relações Internacionais |
| Culture | Cultura |
| Sports | Desporto |
| Education | Educação e Formação Profissional |
| Energy & Telecommunications | Energia e Telecomunicações |
| Housing | Habitação |
| Private Construction | Obras Particulares |
| Public Works | Obras Públicas |
| Territorial Planning | Ordenamento do Território |
| Other | Outros |
| Heritage | Património |
| Municipal Police | Polícia Municipal |
| Animal Protection | Proteção Animal |
| Civil Protection | Proteção Civil |
| Health | Saúde |
| Traffic & Transport | Trânsito, Transportes e Comunicações |
## Evaluation Results
### Comprehensive Performance Metrics
| Metric | Score | Description |
|--------|-------|-------------|
| **F1-macro** | **0.5485** | Macro-averaged F1 score |
| **F1-micro** | **0.7363** | Micro-averaged F1 score |
| **F1-weighted** | **0.742** | Weighted-averaged F1 score |
| **Accuracy** | **0.4518** | Subset accuracy (exact match) |
| **Hamming Loss** | **0.0412** | Label-wise error rate |
| **Average Precision (macro)** | **0.606** | Macro-averaged AP |
| **Average Precision (micro)** | **0.734** | Micro-averaged AP |
## Training Details
### Preprocessing
- Portuguese stopword removal
- Municipal entity recognition
- Legal term preservation
- N-gram extraction (1-3)
### Feature Engineering
- TF-IDF: 10,000 features with sublinear scaling
- BERTimbau: Mean-pooled embeddings (768 dims)
- Feature concatenation: 10,768 total dimensions
### Model Training
- **Strategy**: One-vs-Rest multi-label classification
- **Class Balancing**: Inverse frequency weighting
- **Validation**: Stratified 5-fold cross-validation
- **Threshold Optimization**: Per-label F1-maximization
- **Active Learning**: Adaptive ensemble weights
### Hyperparameters
**LogisticRegression:**
```python
{
'penalty': 'l2',
'C': 1.0,
'max_iter': 1000,
'class_weight': 'balanced'
}
```
**GradientBoosting Models:**
```python
# Model #1
{'n_estimators': 100, 'max_depth': 3, 'learning_rate': 0.1}
# Model #2
{'n_estimators': 150, 'max_depth': 5, 'learning_rate': 0.05}
# Model #3
{'n_estimators': 200, 'max_depth': 4, 'learning_rate': 0.1}
```
## Limitations
- **Language Specificity**: Optimized for Portuguese
- **Domain Focus**: Best performance on municipal/administrative texts
- **Label Set**: Fixed to 22 predefined categories
- **Rare Topics**: Lower performance on infrequent labels (<20 training examples)
- **Ambiguous Cases**: May over-predict for texts with multiple overlapping themes
## License
This model is released under the **Attribution-NonCommercial-NoDerivatives 4.0 International** (CC BY-NC-ND 4.0).
--- |