# Humanizer LoRA Adapter This is a LoRA (Low-Rank Adaptation) adapter for Llama3 8B Instruct that converts formal text into more natural, human-like language. ## Model Details - **Base Model**: meta-llama/Meta-Llama-3-8B-Instruct - **Adapter Type**: LoRA (Low-Rank Adaptation) - **LoRA Rank**: 32 - **LoRA Alpha**: 64 - **Target Modules**: {'k_proj', 'gate_proj', 'q_proj', 'v_proj', 'up_proj', 'down_proj', 'o_proj'} - **Task**: Text humanization - converting formal/academic text to conversational style ## Files Included This adapter includes all necessary files: - `adapter_config.json` - LoRA configuration - `adapter_model.safetensors` - LoRA weights - `special_tokens_map.json` - Special tokens mapping - `tokenizer.json` - Tokenizer vocabulary - `tokenizer_config.json` - Tokenizer configuration - `training_args.bin` - Training arguments ## Usage ```python from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel # Load base model and tokenizer base_model = "meta-llama/Meta-Llama-3-8B-Instruct" model = AutoModelForCausalLM.from_pretrained( base_model, torch_dtype=torch.float16, device_map="auto", trust_remote_code=True ) tokenizer = AutoTokenizer.from_pretrained(base_model) # Load LoRA adapter adapter_name = "arda24/Humanizer" model = PeftModel.from_pretrained(model, adapter_name) # Prepare input prompt = "### Instruction: rewrite this text in a natural and human like way ### Input: The system requires authentication before proceeding. ### Response: " # Generate humanized text inputs = tokenizer(prompt, return_tensors="pt") if torch.cuda.is_available(): inputs = {k: v.cuda() for k, v in inputs.items()} outputs = model.generate( **inputs, max_new_tokens=256, temperature=0.3, do_sample=True, top_p=0.7, repetition_penalty=1.05, no_repeat_ngram_size=2 ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) humanized_text = response.split("### Response:")[1].strip() print(humanized_text) ``` ## Example **Input**: "The system requires authentication before proceeding." **Output**: "You need to log in first before you can access the system." ## Training Configuration - **LoRA Rank**: 32 - **LoRA Alpha**: 64 - **Learning Rate**: 1e-5 - **Batch Size**: 1 - **Gradient Accumulation Steps**: 16 - **Training Steps**: ~4000 ## Advantages of LoRA - **Smaller size**: Only ~50MB vs several GB for full model - **Faster loading**: Loads quickly on top of base model - **Flexible**: Can be combined with other adapters - **Efficient**: Uses minimal additional parameters ## Limitations - Works best with formal/academic text - May occasionally add citations if not properly controlled - Conservative settings recommended for minimal changes - Not suitable for creative writing or fiction ## License This adapter is based on Llama3 8B Instruct and follows the same license terms.