Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,633 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model: microsoft/deberta-v3-base
|
| 3 |
+
datasets:
|
| 4 |
+
- tals/vitaminc
|
| 5 |
+
- allenai/scitail
|
| 6 |
+
- allenai/sciq
|
| 7 |
+
- allenai/qasc
|
| 8 |
+
- sentence-transformers/msmarco-msmarco-distilbert-base-v3
|
| 9 |
+
- sentence-transformers/natural-questions
|
| 10 |
+
- sentence-transformers/trivia-qa
|
| 11 |
+
- sentence-transformers/gooaq
|
| 12 |
+
- google-research-datasets/paws
|
| 13 |
+
language:
|
| 14 |
+
- en
|
| 15 |
+
library_name: sentence-transformers
|
| 16 |
+
metrics:
|
| 17 |
+
- pearson_cosine
|
| 18 |
+
- spearman_cosine
|
| 19 |
+
- pearson_manhattan
|
| 20 |
+
- spearman_manhattan
|
| 21 |
+
- pearson_euclidean
|
| 22 |
+
- spearman_euclidean
|
| 23 |
+
- pearson_dot
|
| 24 |
+
- spearman_dot
|
| 25 |
+
- pearson_max
|
| 26 |
+
- spearman_max
|
| 27 |
+
- cosine_accuracy
|
| 28 |
+
- cosine_accuracy_threshold
|
| 29 |
+
- cosine_f1
|
| 30 |
+
- cosine_f1_threshold
|
| 31 |
+
- cosine_precision
|
| 32 |
+
- cosine_recall
|
| 33 |
+
- cosine_ap
|
| 34 |
+
- dot_accuracy
|
| 35 |
+
- dot_accuracy_threshold
|
| 36 |
+
- dot_f1
|
| 37 |
+
- dot_f1_threshold
|
| 38 |
+
- dot_precision
|
| 39 |
+
- dot_recall
|
| 40 |
+
- dot_ap
|
| 41 |
+
- manhattan_accuracy
|
| 42 |
+
- manhattan_accuracy_threshold
|
| 43 |
+
- manhattan_f1
|
| 44 |
+
- manhattan_f1_threshold
|
| 45 |
+
- manhattan_precision
|
| 46 |
+
- manhattan_recall
|
| 47 |
+
- manhattan_ap
|
| 48 |
+
- euclidean_accuracy
|
| 49 |
+
- euclidean_accuracy_threshold
|
| 50 |
+
- euclidean_f1
|
| 51 |
+
- euclidean_f1_threshold
|
| 52 |
+
- euclidean_precision
|
| 53 |
+
- euclidean_recall
|
| 54 |
+
- euclidean_ap
|
| 55 |
+
- max_accuracy
|
| 56 |
+
- max_accuracy_threshold
|
| 57 |
+
- max_f1
|
| 58 |
+
- max_f1_threshold
|
| 59 |
+
- max_precision
|
| 60 |
+
- max_recall
|
| 61 |
+
- max_ap
|
| 62 |
+
pipeline_tag: sentence-similarity
|
| 63 |
+
tags:
|
| 64 |
+
- sentence-transformers
|
| 65 |
+
- sentence-similarity
|
| 66 |
+
- feature-extraction
|
| 67 |
+
- generated_from_trainer
|
| 68 |
+
- dataset_size:123245
|
| 69 |
+
- loss:CachedGISTEmbedLoss
|
| 70 |
+
widget:
|
| 71 |
+
- source_sentence: what type of inheritance does haemochromatosis
|
| 72 |
+
sentences:
|
| 73 |
+
- Nestled on the tranquil banks of the Pamlico River, Moss Landing is a vibrant
|
| 74 |
+
new community of thoughtfully conceived, meticulously crafted single-family homes
|
| 75 |
+
in Washington, North Carolina. Washington is renowned for its historic architecture
|
| 76 |
+
and natural beauty.
|
| 77 |
+
- '1 Microwave on high for 8 to 10 minutes or until tender, turning the yams once.
|
| 78 |
+
2 To microwave sliced yams: Wash, peel, and cut off the woody portions and ends.
|
| 79 |
+
3 Cut yams into quarters. 4 Place the yams and 1/2 cup water in a microwave-safe
|
| 80 |
+
casserole.ake the Yams. 1 Place half the yams in a 1-quart casserole. 2 Layer
|
| 81 |
+
with half the brown sugar and half the margarine. 3 Repeat the layers. 4 Bake,
|
| 82 |
+
uncovered, in a 375 degree F oven for 30 to 35 minutes or until the yams are glazed,
|
| 83 |
+
spooning the liquid over the yams once or twice during cooking.'
|
| 84 |
+
- Types 1, 2, and 3 hemochromatosis are inherited in an autosomal recessive pattern,
|
| 85 |
+
which means both copies of the gene in each cell have mutations. Most often, the
|
| 86 |
+
parents of an individual with an autosomal recessive condition each carry one
|
| 87 |
+
copy of the mutated gene but do not show signs and symptoms of the condition.Type
|
| 88 |
+
4 hemochromatosis is distinguished by its autosomal dominant inheritance pattern.With
|
| 89 |
+
this type of inheritance, one copy of the altered gene in each cell is sufficient
|
| 90 |
+
to cause the disorder. In most cases, an affected person has one parent with the
|
| 91 |
+
condition.ype 1, the most common form of the disorder, and type 4 (also called
|
| 92 |
+
ferroportin disease) begin in adulthood. Men with type 1 or type 4 hemochromatosis
|
| 93 |
+
typically develop symptoms between the ages of 40 and 60, and women usually develop
|
| 94 |
+
symptoms after menopause. Type 2 hemochromatosis is a juvenile-onset disorder.
|
| 95 |
+
- source_sentence: More than 273 people have died from the 2019-20 coronavirus outside
|
| 96 |
+
mainland China .
|
| 97 |
+
sentences:
|
| 98 |
+
- 'More than 3,700 people have died : around 3,100 in mainland China and around
|
| 99 |
+
550 in all other countries combined .'
|
| 100 |
+
- 'More than 3,200 people have died : almost 3,000 in mainland China and around
|
| 101 |
+
275 in other countries .'
|
| 102 |
+
- more than 4,900 deaths have been attributed to COVID-19 .
|
| 103 |
+
- source_sentence: The male reproductive system consists of structures that produce
|
| 104 |
+
sperm and secrete testosterone.
|
| 105 |
+
sentences:
|
| 106 |
+
- What does the male reproductive system consist of?
|
| 107 |
+
- What facilitates the diffusion of ions across a membrane?
|
| 108 |
+
- Autoimmunity can develop with time, and its causes may be rooted in this?
|
| 109 |
+
- source_sentence: Nitrogen gas comprises about three-fourths of earth's atmosphere.
|
| 110 |
+
sentences:
|
| 111 |
+
- What do all cells have in common?
|
| 112 |
+
- What gas comprises about three-fourths of earth's atmosphere?
|
| 113 |
+
- What do you call an animal in which the embryo, often termed a joey, is born immature
|
| 114 |
+
and must complete its development outside the mother's body?
|
| 115 |
+
- source_sentence: What device is used to regulate a person's heart rate?
|
| 116 |
+
sentences:
|
| 117 |
+
- 'Marie Antoinette and the French Revolution . Famous Faces . Mad Max:
|
| 118 |
+
Maximilien Robespierre | PBS Extended Interviews > Resources > For Educators
|
| 119 |
+
> Mad Max: Maximilien Robespierre Maximilien Robespierre was born May 6, 1758
|
| 120 |
+
in Arras, France. Educated at the Lycée Louis-le-Grand in Paris as a lawyer, Robespierre
|
| 121 |
+
became a disciple of philosopher Jean-Jacques Rousseau and a passionate advocate
|
| 122 |
+
for the poor. Called "the Incorruptible" because of his unwavering dedication
|
| 123 |
+
to the Revolution, Robespierre joined the Jacobin Club and earned a loyal following.
|
| 124 |
+
In contrast to the more republican Girondins and Marie Antoinette, Robespierre
|
| 125 |
+
fiercely opposed declaring war on Austria, feeling it would distract from revolutionary
|
| 126 |
+
progress in France. Robespierre''s exemplary oratory skills influenced the National
|
| 127 |
+
Convention in 1792 to avoid seeking public opinion about the Convention’s decision
|
| 128 |
+
to execute King Louis XVI. In 1793, the Convention elected Robespierre to the
|
| 129 |
+
Committee of Public Defense. He was a highly controversial member, developing
|
| 130 |
+
radical policies, warning of conspiracies, and suggesting restructuring the Convention.
|
| 131 |
+
This behavior eventually led to his downfall, and he was guillotined without trial
|
| 132 |
+
on 10th Thermidor An II (July 28, 1794), marking the end of the Reign of Terror.
|
| 133 |
+
Famous Faces'
|
| 134 |
+
- Devices for Arrhythmia Devices for Arrhythmia Updated:Dec 21,2016 In a medical
|
| 135 |
+
emergency, life-threatening arrhythmias may be stopped by giving the heart an
|
| 136 |
+
electric shock (as with a defibrillator ). For people with recurrent arrhythmias,
|
| 137 |
+
medical devices such as a pacemaker and implantable cardioverter defibrillator
|
| 138 |
+
(ICD) can help by continuously monitoring the heart's electrical system and providing
|
| 139 |
+
automatic correction when an arrhythmia starts to occur. This section covers everything
|
| 140 |
+
you need to know about these devices. Implantable Cardioverter Defibrillator (ICD)
|
| 141 |
+
- 'vintage cleats | eBay vintage cleats: 1 2 3 4 5 eBay determines this price through
|
| 142 |
+
a machine learned model of the product''s sale prices within the last 90 days.
|
| 143 |
+
eBay determines trending price through a machine learned model of the product’s
|
| 144 |
+
sale prices within the last 90 days. "New" refers to a brand-new, unused, unopened,
|
| 145 |
+
undamaged item, and "Used" refers to an item that has been used previously. Top
|
| 146 |
+
Rated Plus Sellers with highest buyer ratings Returns, money back Sellers with
|
| 147 |
+
highest buyer ratings Returns, money back'
|
| 148 |
+
model-index:
|
| 149 |
+
- name: SentenceTransformer based on microsoft/deberta-v3-base
|
| 150 |
+
results:
|
| 151 |
+
- task:
|
| 152 |
+
type: semantic-similarity
|
| 153 |
+
name: Semantic Similarity
|
| 154 |
+
dataset:
|
| 155 |
+
name: sts test
|
| 156 |
+
type: sts-test
|
| 157 |
+
metrics:
|
| 158 |
+
- type: pearson_cosine
|
| 159 |
+
value: 0.8253431554642914
|
| 160 |
+
name: Pearson Cosine
|
| 161 |
+
- type: spearman_cosine
|
| 162 |
+
value: 0.870857890879963
|
| 163 |
+
name: Spearman Cosine
|
| 164 |
+
- type: pearson_manhattan
|
| 165 |
+
value: 0.8653068915625914
|
| 166 |
+
name: Pearson Manhattan
|
| 167 |
+
- type: spearman_manhattan
|
| 168 |
+
value: 0.8667110599943904
|
| 169 |
+
name: Spearman Manhattan
|
| 170 |
+
- type: pearson_euclidean
|
| 171 |
+
value: 0.8671346646296434
|
| 172 |
+
name: Pearson Euclidean
|
| 173 |
+
- type: spearman_euclidean
|
| 174 |
+
value: 0.8681442638917114
|
| 175 |
+
name: Spearman Euclidean
|
| 176 |
+
- type: pearson_dot
|
| 177 |
+
value: 0.7826717704847901
|
| 178 |
+
name: Pearson Dot
|
| 179 |
+
- type: spearman_dot
|
| 180 |
+
value: 0.7685403521338614
|
| 181 |
+
name: Spearman Dot
|
| 182 |
+
- type: pearson_max
|
| 183 |
+
value: 0.8671346646296434
|
| 184 |
+
name: Pearson Max
|
| 185 |
+
- type: spearman_max
|
| 186 |
+
value: 0.870857890879963
|
| 187 |
+
name: Spearman Max
|
| 188 |
+
- task:
|
| 189 |
+
type: binary-classification
|
| 190 |
+
name: Binary Classification
|
| 191 |
+
dataset:
|
| 192 |
+
name: allNLI dev
|
| 193 |
+
type: allNLI-dev
|
| 194 |
+
metrics:
|
| 195 |
+
- type: cosine_accuracy
|
| 196 |
+
value: 0.71875
|
| 197 |
+
name: Cosine Accuracy
|
| 198 |
+
- type: cosine_accuracy_threshold
|
| 199 |
+
value: 0.8745474815368652
|
| 200 |
+
name: Cosine Accuracy Threshold
|
| 201 |
+
- type: cosine_f1
|
| 202 |
+
value: 0.617169373549884
|
| 203 |
+
name: Cosine F1
|
| 204 |
+
- type: cosine_f1_threshold
|
| 205 |
+
value: 0.7519949674606323
|
| 206 |
+
name: Cosine F1 Threshold
|
| 207 |
+
- type: cosine_precision
|
| 208 |
+
value: 0.5155038759689923
|
| 209 |
+
name: Cosine Precision
|
| 210 |
+
- type: cosine_recall
|
| 211 |
+
value: 0.7687861271676301
|
| 212 |
+
name: Cosine Recall
|
| 213 |
+
- type: cosine_ap
|
| 214 |
+
value: 0.6116004689391709
|
| 215 |
+
name: Cosine Ap
|
| 216 |
+
- type: dot_accuracy
|
| 217 |
+
value: 0.693359375
|
| 218 |
+
name: Dot Accuracy
|
| 219 |
+
- type: dot_accuracy_threshold
|
| 220 |
+
value: 401.3755187988281
|
| 221 |
+
name: Dot Accuracy Threshold
|
| 222 |
+
- type: dot_f1
|
| 223 |
+
value: 0.566735112936345
|
| 224 |
+
name: Dot F1
|
| 225 |
+
- type: dot_f1_threshold
|
| 226 |
+
value: 295.2575988769531
|
| 227 |
+
name: Dot F1 Threshold
|
| 228 |
+
- type: dot_precision
|
| 229 |
+
value: 0.4394904458598726
|
| 230 |
+
name: Dot Precision
|
| 231 |
+
- type: dot_recall
|
| 232 |
+
value: 0.7976878612716763
|
| 233 |
+
name: Dot Recall
|
| 234 |
+
- type: dot_ap
|
| 235 |
+
value: 0.5243551756921989
|
| 236 |
+
name: Dot Ap
|
| 237 |
+
- type: manhattan_accuracy
|
| 238 |
+
value: 0.724609375
|
| 239 |
+
name: Manhattan Accuracy
|
| 240 |
+
- type: manhattan_accuracy_threshold
|
| 241 |
+
value: 228.3092498779297
|
| 242 |
+
name: Manhattan Accuracy Threshold
|
| 243 |
+
- type: manhattan_f1
|
| 244 |
+
value: 0.6267281105990783
|
| 245 |
+
name: Manhattan F1
|
| 246 |
+
- type: manhattan_f1_threshold
|
| 247 |
+
value: 266.0207824707031
|
| 248 |
+
name: Manhattan F1 Threshold
|
| 249 |
+
- type: manhattan_precision
|
| 250 |
+
value: 0.5210727969348659
|
| 251 |
+
name: Manhattan Precision
|
| 252 |
+
- type: manhattan_recall
|
| 253 |
+
value: 0.7861271676300579
|
| 254 |
+
name: Manhattan Recall
|
| 255 |
+
- type: manhattan_ap
|
| 256 |
+
value: 0.6101425904568746
|
| 257 |
+
name: Manhattan Ap
|
| 258 |
+
- type: euclidean_accuracy
|
| 259 |
+
value: 0.720703125
|
| 260 |
+
name: Euclidean Accuracy
|
| 261 |
+
- type: euclidean_accuracy_threshold
|
| 262 |
+
value: 9.726119041442871
|
| 263 |
+
name: Euclidean Accuracy Threshold
|
| 264 |
+
- type: euclidean_f1
|
| 265 |
+
value: 0.6303854875283447
|
| 266 |
+
name: Euclidean F1
|
| 267 |
+
- type: euclidean_f1_threshold
|
| 268 |
+
value: 14.837699890136719
|
| 269 |
+
name: Euclidean F1 Threshold
|
| 270 |
+
- type: euclidean_precision
|
| 271 |
+
value: 0.5186567164179104
|
| 272 |
+
name: Euclidean Precision
|
| 273 |
+
- type: euclidean_recall
|
| 274 |
+
value: 0.8034682080924855
|
| 275 |
+
name: Euclidean Recall
|
| 276 |
+
- type: euclidean_ap
|
| 277 |
+
value: 0.6172110045723997
|
| 278 |
+
name: Euclidean Ap
|
| 279 |
+
- type: max_accuracy
|
| 280 |
+
value: 0.724609375
|
| 281 |
+
name: Max Accuracy
|
| 282 |
+
- type: max_accuracy_threshold
|
| 283 |
+
value: 401.3755187988281
|
| 284 |
+
name: Max Accuracy Threshold
|
| 285 |
+
- type: max_f1
|
| 286 |
+
value: 0.6303854875283447
|
| 287 |
+
name: Max F1
|
| 288 |
+
- type: max_f1_threshold
|
| 289 |
+
value: 295.2575988769531
|
| 290 |
+
name: Max F1 Threshold
|
| 291 |
+
- type: max_precision
|
| 292 |
+
value: 0.5210727969348659
|
| 293 |
+
name: Max Precision
|
| 294 |
+
- type: max_recall
|
| 295 |
+
value: 0.8034682080924855
|
| 296 |
+
name: Max Recall
|
| 297 |
+
- type: max_ap
|
| 298 |
+
value: 0.6172110045723997
|
| 299 |
+
name: Max Ap
|
| 300 |
+
- task:
|
| 301 |
+
type: binary-classification
|
| 302 |
+
name: Binary Classification
|
| 303 |
+
dataset:
|
| 304 |
+
name: Qnli dev
|
| 305 |
+
type: Qnli-dev
|
| 306 |
+
metrics:
|
| 307 |
+
- type: cosine_accuracy
|
| 308 |
+
value: 0.673828125
|
| 309 |
+
name: Cosine Accuracy
|
| 310 |
+
- type: cosine_accuracy_threshold
|
| 311 |
+
value: 0.7472400069236755
|
| 312 |
+
name: Cosine Accuracy Threshold
|
| 313 |
+
- type: cosine_f1
|
| 314 |
+
value: 0.6863468634686347
|
| 315 |
+
name: Cosine F1
|
| 316 |
+
- type: cosine_f1_threshold
|
| 317 |
+
value: 0.7334084510803223
|
| 318 |
+
name: Cosine F1 Threshold
|
| 319 |
+
- type: cosine_precision
|
| 320 |
+
value: 0.6078431372549019
|
| 321 |
+
name: Cosine Precision
|
| 322 |
+
- type: cosine_recall
|
| 323 |
+
value: 0.788135593220339
|
| 324 |
+
name: Cosine Recall
|
| 325 |
+
- type: cosine_ap
|
| 326 |
+
value: 0.7293502303398447
|
| 327 |
+
name: Cosine Ap
|
| 328 |
+
- type: dot_accuracy
|
| 329 |
+
value: 0.6484375
|
| 330 |
+
name: Dot Accuracy
|
| 331 |
+
- type: dot_accuracy_threshold
|
| 332 |
+
value: 392.88726806640625
|
| 333 |
+
name: Dot Accuracy Threshold
|
| 334 |
+
- type: dot_f1
|
| 335 |
+
value: 0.6634920634920635
|
| 336 |
+
name: Dot F1
|
| 337 |
+
- type: dot_f1_threshold
|
| 338 |
+
value: 310.97833251953125
|
| 339 |
+
name: Dot F1 Threshold
|
| 340 |
+
- type: dot_precision
|
| 341 |
+
value: 0.5304568527918782
|
| 342 |
+
name: Dot Precision
|
| 343 |
+
- type: dot_recall
|
| 344 |
+
value: 0.885593220338983
|
| 345 |
+
name: Dot Recall
|
| 346 |
+
- type: dot_ap
|
| 347 |
+
value: 0.6331200610041253
|
| 348 |
+
name: Dot Ap
|
| 349 |
+
- type: manhattan_accuracy
|
| 350 |
+
value: 0.671875
|
| 351 |
+
name: Manhattan Accuracy
|
| 352 |
+
- type: manhattan_accuracy_threshold
|
| 353 |
+
value: 277.69342041015625
|
| 354 |
+
name: Manhattan Accuracy Threshold
|
| 355 |
+
- type: manhattan_f1
|
| 356 |
+
value: 0.6830122591943958
|
| 357 |
+
name: Manhattan F1
|
| 358 |
+
- type: manhattan_f1_threshold
|
| 359 |
+
value: 301.36639404296875
|
| 360 |
+
name: Manhattan F1 Threshold
|
| 361 |
+
- type: manhattan_precision
|
| 362 |
+
value: 0.582089552238806
|
| 363 |
+
name: Manhattan Precision
|
| 364 |
+
- type: manhattan_recall
|
| 365 |
+
value: 0.826271186440678
|
| 366 |
+
name: Manhattan Recall
|
| 367 |
+
- type: manhattan_ap
|
| 368 |
+
value: 0.7276384343706648
|
| 369 |
+
name: Manhattan Ap
|
| 370 |
+
- type: euclidean_accuracy
|
| 371 |
+
value: 0.68359375
|
| 372 |
+
name: Euclidean Accuracy
|
| 373 |
+
- type: euclidean_accuracy_threshold
|
| 374 |
+
value: 15.343950271606445
|
| 375 |
+
name: Euclidean Accuracy Threshold
|
| 376 |
+
- type: euclidean_f1
|
| 377 |
+
value: 0.6895238095238095
|
| 378 |
+
name: Euclidean F1
|
| 379 |
+
- type: euclidean_f1_threshold
|
| 380 |
+
value: 15.738676071166992
|
| 381 |
+
name: Euclidean F1 Threshold
|
| 382 |
+
- type: euclidean_precision
|
| 383 |
+
value: 0.6262975778546713
|
| 384 |
+
name: Euclidean Precision
|
| 385 |
+
- type: euclidean_recall
|
| 386 |
+
value: 0.7669491525423728
|
| 387 |
+
name: Euclidean Recall
|
| 388 |
+
- type: euclidean_ap
|
| 389 |
+
value: 0.7307379367367225
|
| 390 |
+
name: Euclidean Ap
|
| 391 |
+
- type: max_accuracy
|
| 392 |
+
value: 0.68359375
|
| 393 |
+
name: Max Accuracy
|
| 394 |
+
- type: max_accuracy_threshold
|
| 395 |
+
value: 392.88726806640625
|
| 396 |
+
name: Max Accuracy Threshold
|
| 397 |
+
- type: max_f1
|
| 398 |
+
value: 0.6895238095238095
|
| 399 |
+
name: Max F1
|
| 400 |
+
- type: max_f1_threshold
|
| 401 |
+
value: 310.97833251953125
|
| 402 |
+
name: Max F1 Threshold
|
| 403 |
+
- type: max_precision
|
| 404 |
+
value: 0.6262975778546713
|
| 405 |
+
name: Max Precision
|
| 406 |
+
- type: max_recall
|
| 407 |
+
value: 0.885593220338983
|
| 408 |
+
name: Max Recall
|
| 409 |
+
- type: max_ap
|
| 410 |
+
value: 0.7307379367367225
|
| 411 |
+
name: Max Ap
|
| 412 |
+
---
|
| 413 |
+
|
| 414 |
+
# SentenceTransformer based on microsoft/deberta-v3-base
|
| 415 |
+
|
| 416 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the negation-triplets, [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc), [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail), [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail), xsum-pairs, [sciq_pairs](https://huggingface.co/datasets/allenai/sciq), [qasc_pairs](https://huggingface.co/datasets/allenai/qasc), openbookqa_pairs, [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3), [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions), [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa), [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq), [paws-pos](https://huggingface.co/datasets/google-research-datasets/paws) and global_dataset datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 417 |
+
|
| 418 |
+
## Model Details
|
| 419 |
+
|
| 420 |
+
### Model Description
|
| 421 |
+
- **Model Type:** Sentence Transformer
|
| 422 |
+
- **Base model:** [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) <!-- at revision 8ccc9b6f36199bec6961081d44eb72fb3f7353f3 -->
|
| 423 |
+
- **Maximum Sequence Length:** 512 tokens
|
| 424 |
+
- **Output Dimensionality:** 768 tokens
|
| 425 |
+
- **Similarity Function:** Cosine Similarity
|
| 426 |
+
- **Training Datasets:**
|
| 427 |
+
- negation-triplets
|
| 428 |
+
- [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc)
|
| 429 |
+
- [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail)
|
| 430 |
+
- [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail)
|
| 431 |
+
- xsum-pairs
|
| 432 |
+
- [sciq_pairs](https://huggingface.co/datasets/allenai/sciq)
|
| 433 |
+
- [qasc_pairs](https://huggingface.co/datasets/allenai/qasc)
|
| 434 |
+
- openbookqa_pairs
|
| 435 |
+
- [msmarco_pairs](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-v3)
|
| 436 |
+
- [nq_pairs](https://huggingface.co/datasets/sentence-transformers/natural-questions)
|
| 437 |
+
- [trivia_pairs](https://huggingface.co/datasets/sentence-transformers/trivia-qa)
|
| 438 |
+
- [gooaq_pairs](https://huggingface.co/datasets/sentence-transformers/gooaq)
|
| 439 |
+
- [paws-pos](https://huggingface.co/datasets/google-research-datasets/paws)
|
| 440 |
+
- global_dataset
|
| 441 |
+
- **Language:** en
|
| 442 |
+
<!-- - **License:** Unknown -->
|
| 443 |
+
## Evaluation
|
| 444 |
+
|
| 445 |
+
### Metrics
|
| 446 |
+
|
| 447 |
+
#### Semantic Similarity
|
| 448 |
+
* Dataset: `sts-test`
|
| 449 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
| 450 |
+
|
| 451 |
+
| Metric | Value |
|
| 452 |
+
|:--------------------|:-----------|
|
| 453 |
+
| pearson_cosine | 0.8253 |
|
| 454 |
+
| **spearman_cosine** | **0.8709** |
|
| 455 |
+
| pearson_manhattan | 0.8653 |
|
| 456 |
+
| spearman_manhattan | 0.8667 |
|
| 457 |
+
| pearson_euclidean | 0.8671 |
|
| 458 |
+
| spearman_euclidean | 0.8681 |
|
| 459 |
+
| pearson_dot | 0.7827 |
|
| 460 |
+
| spearman_dot | 0.7685 |
|
| 461 |
+
| pearson_max | 0.8671 |
|
| 462 |
+
| spearman_max | 0.8709 |
|
| 463 |
+
|
| 464 |
+
|
| 465 |
+
<!--
|
| 466 |
+
## Bias, Risks and Limitations
|
| 467 |
+
|
| 468 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 469 |
+
-->
|
| 470 |
+
|
| 471 |
+
|
| 472 |
+
### Training Hyperparameters
|
| 473 |
+
#### Non-Default Hyperparameters
|
| 474 |
+
|
| 475 |
+
- `eval_strategy`: steps
|
| 476 |
+
- `per_device_train_batch_size`: 96
|
| 477 |
+
- `per_device_eval_batch_size`: 68
|
| 478 |
+
- `learning_rate`: 3.5e-05
|
| 479 |
+
- `weight_decay`: 0.0005
|
| 480 |
+
- `num_train_epochs`: 2
|
| 481 |
+
- `lr_scheduler_type`: cosine_with_min_lr
|
| 482 |
+
- `lr_scheduler_kwargs`: {'num_cycles': 3.5, 'min_lr': 1.5e-05}
|
| 483 |
+
- `warmup_ratio`: 0.33
|
| 484 |
+
- `save_safetensors`: False
|
| 485 |
+
- `fp16`: True
|
| 486 |
+
- `push_to_hub`: True
|
| 487 |
+
- `hub_model_id`: bobox/DeBERTa3-base-STr-CosineWaves-checkpoints-tmp
|
| 488 |
+
- `hub_strategy`: all_checkpoints
|
| 489 |
+
- `batch_sampler`: no_duplicates
|
| 490 |
+
|
| 491 |
+
#### All Hyperparameters
|
| 492 |
+
<details><summary>Click to expand</summary>
|
| 493 |
+
|
| 494 |
+
- `overwrite_output_dir`: False
|
| 495 |
+
- `do_predict`: False
|
| 496 |
+
- `eval_strategy`: steps
|
| 497 |
+
- `prediction_loss_only`: True
|
| 498 |
+
- `per_device_train_batch_size`: 96
|
| 499 |
+
- `per_device_eval_batch_size`: 68
|
| 500 |
+
- `per_gpu_train_batch_size`: None
|
| 501 |
+
- `per_gpu_eval_batch_size`: None
|
| 502 |
+
- `gradient_accumulation_steps`: 1
|
| 503 |
+
- `eval_accumulation_steps`: None
|
| 504 |
+
- `torch_empty_cache_steps`: None
|
| 505 |
+
- `learning_rate`: 3.5e-05
|
| 506 |
+
- `weight_decay`: 0.0005
|
| 507 |
+
- `adam_beta1`: 0.9
|
| 508 |
+
- `adam_beta2`: 0.999
|
| 509 |
+
- `adam_epsilon`: 1e-08
|
| 510 |
+
- `max_grad_norm`: 1.0
|
| 511 |
+
- `num_train_epochs`: 2
|
| 512 |
+
- `max_steps`: -1
|
| 513 |
+
- `lr_scheduler_type`: cosine_with_min_lr
|
| 514 |
+
- `lr_scheduler_kwargs`: {'num_cycles': 3.5, 'min_lr': 1.5e-05}
|
| 515 |
+
- `warmup_ratio`: 0.33
|
| 516 |
+
- `warmup_steps`: 0
|
| 517 |
+
- `log_level`: passive
|
| 518 |
+
- `log_level_replica`: warning
|
| 519 |
+
- `log_on_each_node`: True
|
| 520 |
+
- `logging_nan_inf_filter`: True
|
| 521 |
+
- `save_safetensors`: False
|
| 522 |
+
- `save_on_each_node`: False
|
| 523 |
+
- `save_only_model`: False
|
| 524 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 525 |
+
- `no_cuda`: False
|
| 526 |
+
- `use_cpu`: False
|
| 527 |
+
- `use_mps_device`: False
|
| 528 |
+
- `seed`: 42
|
| 529 |
+
- `data_seed`: None
|
| 530 |
+
- `jit_mode_eval`: False
|
| 531 |
+
- `use_ipex`: False
|
| 532 |
+
- `bf16`: False
|
| 533 |
+
- `fp16`: True
|
| 534 |
+
- `fp16_opt_level`: O1
|
| 535 |
+
- `half_precision_backend`: auto
|
| 536 |
+
- `bf16_full_eval`: False
|
| 537 |
+
- `fp16_full_eval`: False
|
| 538 |
+
- `tf32`: None
|
| 539 |
+
- `local_rank`: 0
|
| 540 |
+
- `ddp_backend`: None
|
| 541 |
+
- `tpu_num_cores`: None
|
| 542 |
+
- `tpu_metrics_debug`: False
|
| 543 |
+
- `debug`: []
|
| 544 |
+
- `dataloader_drop_last`: False
|
| 545 |
+
- `dataloader_num_workers`: 0
|
| 546 |
+
- `dataloader_prefetch_factor`: None
|
| 547 |
+
- `past_index`: -1
|
| 548 |
+
- `disable_tqdm`: False
|
| 549 |
+
- `remove_unused_columns`: True
|
| 550 |
+
- `label_names`: None
|
| 551 |
+
- `load_best_model_at_end`: False
|
| 552 |
+
- `ignore_data_skip`: False
|
| 553 |
+
- `fsdp`: []
|
| 554 |
+
- `fsdp_min_num_params`: 0
|
| 555 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 556 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 557 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 558 |
+
- `deepspeed`: None
|
| 559 |
+
- `label_smoothing_factor`: 0.0
|
| 560 |
+
- `optim`: adamw_torch
|
| 561 |
+
- `optim_args`: None
|
| 562 |
+
- `adafactor`: False
|
| 563 |
+
- `group_by_length`: False
|
| 564 |
+
- `length_column_name`: length
|
| 565 |
+
- `ddp_find_unused_parameters`: None
|
| 566 |
+
- `ddp_bucket_cap_mb`: None
|
| 567 |
+
- `ddp_broadcast_buffers`: False
|
| 568 |
+
- `dataloader_pin_memory`: True
|
| 569 |
+
- `dataloader_persistent_workers`: False
|
| 570 |
+
- `skip_memory_metrics`: True
|
| 571 |
+
- `use_legacy_prediction_loop`: False
|
| 572 |
+
- `push_to_hub`: True
|
| 573 |
+
- `resume_from_checkpoint`: None
|
| 574 |
+
- `hub_model_id`: bobox/DeBERTa3-base-STr-CosineWaves-checkpoints-tmp
|
| 575 |
+
- `hub_strategy`: all_checkpoints
|
| 576 |
+
- `hub_private_repo`: False
|
| 577 |
+
- `hub_always_push`: False
|
| 578 |
+
- `gradient_checkpointing`: False
|
| 579 |
+
- `gradient_checkpointing_kwargs`: None
|
| 580 |
+
- `include_inputs_for_metrics`: False
|
| 581 |
+
- `eval_do_concat_batches`: True
|
| 582 |
+
- `fp16_backend`: auto
|
| 583 |
+
- `push_to_hub_model_id`: None
|
| 584 |
+
- `push_to_hub_organization`: None
|
| 585 |
+
- `mp_parameters`:
|
| 586 |
+
- `auto_find_batch_size`: False
|
| 587 |
+
- `full_determinism`: False
|
| 588 |
+
- `torchdynamo`: None
|
| 589 |
+
- `ray_scope`: last
|
| 590 |
+
- `ddp_timeout`: 1800
|
| 591 |
+
- `torch_compile`: False
|
| 592 |
+
- `torch_compile_backend`: None
|
| 593 |
+
- `torch_compile_mode`: None
|
| 594 |
+
- `dispatch_batches`: None
|
| 595 |
+
- `split_batches`: None
|
| 596 |
+
- `include_tokens_per_second`: False
|
| 597 |
+
- `include_num_input_tokens_seen`: False
|
| 598 |
+
- `neftune_noise_alpha`: None
|
| 599 |
+
- `optim_target_modules`: None
|
| 600 |
+
- `batch_eval_metrics`: False
|
| 601 |
+
- `eval_on_start`: False
|
| 602 |
+
- `eval_use_gather_object`: False
|
| 603 |
+
- `batch_sampler`: no_duplicates
|
| 604 |
+
- `multi_dataset_batch_sampler`: proportional
|
| 605 |
+
|
| 606 |
+
</details>
|
| 607 |
+
|
| 608 |
+
|
| 609 |
+
### Framework Versions
|
| 610 |
+
- Python: 3.10.14
|
| 611 |
+
- Sentence Transformers: 3.0.1
|
| 612 |
+
- Transformers: 4.44.0
|
| 613 |
+
- PyTorch: 2.4.0
|
| 614 |
+
- Accelerate: 0.33.0
|
| 615 |
+
- Datasets: 2.21.0
|
| 616 |
+
- Tokenizers: 0.19.1
|
| 617 |
+
|
| 618 |
+
## Citation
|
| 619 |
+
|
| 620 |
+
### BibTeX
|
| 621 |
+
|
| 622 |
+
#### Sentence Transformers
|
| 623 |
+
```bibtex
|
| 624 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 625 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 626 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 627 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 628 |
+
month = "11",
|
| 629 |
+
year = "2019",
|
| 630 |
+
publisher = "Association for Computational Linguistics",
|
| 631 |
+
url = "https://arxiv.org/abs/1908.10084",
|
| 632 |
+
}
|
| 633 |
+
```
|