dasLOL commited on
Commit
05a764d
·
verified ·
1 Parent(s): 6923474

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +220 -0
README.md ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: modified-mit
4
+ library_name: transformers
5
+ ---
6
+ <div align="center">
7
+ <picture>
8
+ <img src="figures/kimi-logo.png" width="30%" alt="Kimi K2: Open Agentic Intellignece">
9
+ </picture>
10
+ </div>
11
+ <hr>
12
+
13
+ <div align="center" style="line-height:1">
14
+ <a href="https://www.kimi.com" target="_blank"><img alt="Chat" src="https://img.shields.io/badge/🤖%20Chat-Kimi%20K2-ff6b6b?color=1783ff&logoColor=white"/></a>
15
+ <a href="https://github.com/moonshotai/Kimi-K2"><img alt="github" src="https://img.shields.io/badge/🤖%20Github-Kimi%20K2-ff6b6b?color=1783ff&logoColor=white"/></a>
16
+ <a href="https://www.moonshot.ai" target="_blank"><img alt="Homepage" src="https://img.shields.io/badge/Homepage-Moonshot%20AI-white?logo=Kimi&logoColor=white"/></a>
17
+ </div>
18
+
19
+ <div align="center" style="line-height: 1;">
20
+ <a href="https://huggingface.co/moonshotai" target="_blank"><img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Moonshot%20AI-ffc107?color=ffc107&logoColor=white"/></a>
21
+ <a href="https://twitter.com/kimi_moonshot" target="_blank"><img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-Kimi.ai-white?logo=x&logoColor=white"/></a>
22
+ <a href="https://discord.gg/TYU2fdJykW" target="_blank"><img alt="Discord" src="https://img.shields.io/badge/Discord-Kimi.ai-white?logo=discord&logoColor=white"/></a>
23
+ </div>
24
+ <div align="center" style="line-height: 1;">
25
+ <a href="https://huggingface.co/moonshotai/Kimi-K2-Instruct-0905/blob/main/LICENSE"><img alt="License" src="https://img.shields.io/badge/License-Modified_MIT-f5de53?&color=f5de53"/></a>
26
+ </div>
27
+
28
+ <p align="center">
29
+ <b>📰&nbsp;&nbsp;<a href="https://moonshotai.github.io/Kimi-K2/">Tech Blog</a></b> &nbsp;&nbsp;&nbsp; | &nbsp;&nbsp;&nbsp; <b>📄&nbsp;&nbsp;<a href="https://github.com/MoonshotAI/Kimi-K2/blob/main/tech_report.pdf">Paper</a></b>
30
+ </p>
31
+
32
+
33
+ ## 1. Model Introduction
34
+
35
+ Kimi K2-Instruct-0905 is the latest, most capable version of Kimi K2. It is a state-of-the-art mixture-of-experts (MoE) language model, featuring 32 billion activated parameters and a total of 1 trillion parameters.
36
+
37
+ ### Key Features
38
+ - Enhanced agentic coding intelligence: Kimi K2-Instruct-0905 demonstrates significant improvements in performance on public benchmarks and real-world coding agent tasks.
39
+ - Improved frontend coding experience: Kimi K2-Instruct-0905 offers advancements in both the aesthetics and practicality of frontend programming.
40
+ - Extended context length: Kimi K2-Instruct-0905’s context window has been increased from 128k to 256k tokens, providing better support for long-horizon tasks.
41
+
42
+
43
+ ## 2. Model Summary
44
+
45
+ <div align="center">
46
+
47
+
48
+ | | |
49
+ |:---:|:---:|
50
+ | **Architecture** | Mixture-of-Experts (MoE) |
51
+ | **Total Parameters** | 1T |
52
+ | **Activated Parameters** | 32B |
53
+ | **Number of Layers** (Dense layer included) | 61 |
54
+ | **Number of Dense Layers** | 1 |
55
+ | **Attention Hidden Dimension** | 7168 |
56
+ | **MoE Hidden Dimension** (per Expert) | 2048 |
57
+ | **Number of Attention Heads** | 64 |
58
+ | **Number of Experts** | 384 |
59
+ | **Selected Experts per Token** | 8 |
60
+ | **Number of Shared Experts** | 1 |
61
+ | **Vocabulary Size** | 160K |
62
+ | **Context Length** | 256K |
63
+ | **Attention Mechanism** | MLA |
64
+ | **Activation Function** | SwiGLU |
65
+ </div>
66
+
67
+ ## 3. Evaluation Results
68
+
69
+ | Benchmark | Metric | K2-Instruct-0905 | K2-Instruct-0711 | Qwen3-Coder-480B-A35B-Instruct | GLM-4.5 | DeepSeek-V3.1 | Claude-Sonnet-4 | Claude-Opus-4 |
70
+ |------------------------|--------|------------------|------------------|--------|--------|--------|-----------------|---------------|
71
+ | SWE-Bench verified | ACC | 69.2 ± 0.63 | 65.8 | 69.6* | 64.2* | 66.0* | 72.7* | 72.5* |
72
+ | SWE-Bench Multilingual | ACC | 55.9 ± 0.72 | 47.3 | 54.7* | 52.7 | 54.5* | 53.3* | - |
73
+ | Multi-SWE-Bench | ACC | 33.5 ± 0.28 | 31.3 | 32.7 | 31.7 | 29.0 | 35.7 | - |
74
+ | Terminal-Bench | ACC | 44.5 ± 2.03 | 37.5 | 37.5* | 39.9* | 31.3* | 36.4* | 43.2* |
75
+ | SWE-Dev | ACC | 66.6 ± 0.72 | 61.9 | 64.7 | 63.2 | 53.3 | 67.1 | - |
76
+
77
+
78
+ All K2-Instruct-0905 numbers are reported as mean ± std over five independent, full-test-set runs.
79
+ Before each run we prune the repository so that every Git object unreachable from the target commit disappears; this guarantees the agent sees only the code that would legitimately be available at that point in history.
80
+
81
+ Except for Terminal-Bench (Terminus-2), every result was produced with our in-house evaluation harness. The harness is derived from SWE-agent, but we clamp the context windows of the Bash and Edit tools and rewrite the system prompt to match the task semantics. All baseline figures denoted with an asterisk (*) are excerpted directly from their official report or public leaderboard; the remaining metrics were evaluated by us under conditions identical to those used for K2-Instruct-0905.
82
+
83
+ For SWE-Dev we go one step further: we overwrite the original repository files and delete any test file that exercises the functions the agent is expected to generate, eliminating any indirect hints about the desired implementation.
84
+
85
+
86
+ ## 4. Deployment
87
+ > [!Note]
88
+ > You can access Kimi K2's API on https://platform.moonshot.ai , we provide OpenAI/Anthropic-compatible API for you.
89
+ >
90
+ > The Anthropic-compatible API maps temperature by `real_temperature = request_temperature * 0.6` for better compatible with existing applications.
91
+
92
+ Our model checkpoints are stored in the block-fp8 format, you can find it on [Huggingface](https://huggingface.co/moonshotai/Kimi-K2-Instruct).
93
+
94
+ Currently, Kimi-K2 is recommended to run on the following inference engines:
95
+
96
+ * vLLM
97
+ * SGLang
98
+ * KTransformers
99
+ * TensorRT-LLM
100
+
101
+ Deployment examples for vLLM and SGLang can be found in the [Model Deployment Guide](docs/deploy_guidance.md).
102
+
103
+ ---
104
+
105
+ ## 5. Model Usage
106
+
107
+ ### Chat Completion
108
+
109
+ Once the local inference service is up, you can interact with it through the chat endpoint:
110
+
111
+ ```python
112
+ def simple_chat(client: OpenAI, model_name: str):
113
+ messages = [
114
+ {"role": "system", "content": "You are Kimi, an AI assistant created by Moonshot AI."},
115
+ {"role": "user", "content": [{"type": "text", "text": "Please give a brief self-introduction."}]},
116
+ ]
117
+ response = client.chat.completions.create(
118
+ model=model_name,
119
+ messages=messages,
120
+ stream=False,
121
+ temperature=0.6,
122
+ max_tokens=256
123
+ )
124
+ print(response.choices[0].message.content)
125
+ ```
126
+
127
+ > [!NOTE]
128
+ > The recommended temperature for Kimi-K2-Instruct-0905 is `temperature = 0.6`.
129
+ > If no special instructions are required, the system prompt above is a good default.
130
+
131
+ ---
132
+
133
+ ### Tool Calling
134
+
135
+ Kimi-K2-Instruct-0905 has strong tool-calling capabilities.
136
+ To enable them, you need to pass the list of available tools in each request, then the model will autonomously decide when and how to invoke them.
137
+
138
+ The following example demonstrates calling a weather tool end-to-end:
139
+
140
+ ```python
141
+ # Your tool implementation
142
+ def get_weather(city: str) -> dict:
143
+ return {"weather": "Sunny"}
144
+ # Tool schema definition
145
+ tools = [{
146
+ "type": "function",
147
+ "function": {
148
+ "name": "get_weather",
149
+ "description": "Retrieve current weather information. Call this when the user asks about the weather.",
150
+ "parameters": {
151
+ "type": "object",
152
+ "required": ["city"],
153
+ "properties": {
154
+ "city": {
155
+ "type": "string",
156
+ "description": "Name of the city"
157
+ }
158
+ }
159
+ }
160
+ }
161
+ }]
162
+ # Map tool names to their implementations
163
+ tool_map = {
164
+ "get_weather": get_weather
165
+ }
166
+ def tool_call_with_client(client: OpenAI, model_name: str):
167
+ messages = [
168
+ {"role": "system", "content": "You are Kimi, an AI assistant created by Moonshot AI."},
169
+ {"role": "user", "content": "What's the weather like in Beijing today? Use the tool to check."}
170
+ ]
171
+ finish_reason = None
172
+ while finish_reason is None or finish_reason == "tool_calls":
173
+ completion = client.chat.completions.create(
174
+ model=model_name,
175
+ messages=messages,
176
+ temperature=0.6,
177
+ tools=tools, # tool list defined above
178
+ tool_choice="auto"
179
+ )
180
+ choice = completion.choices[0]
181
+ finish_reason = choice.finish_reason
182
+ if finish_reason == "tool_calls":
183
+ messages.append(choice.message)
184
+ for tool_call in choice.message.tool_calls:
185
+ tool_call_name = tool_call.function.name
186
+ tool_call_arguments = json.loads(tool_call.function.arguments)
187
+ tool_function = tool_map[tool_call_name]
188
+ tool_result = tool_function(**tool_call_arguments)
189
+ print("tool_result:", tool_result)
190
+ messages.append({
191
+ "role": "tool",
192
+ "tool_call_id": tool_call.id,
193
+ "name": tool_call_name,
194
+ "content": json.dumps(tool_result)
195
+ })
196
+ print("-" * 100)
197
+ print(choice.message.content)
198
+ ```
199
+
200
+ The `tool_call_with_client` function implements the pipeline from user query to tool execution.
201
+ This pipeline requires the inference engine to support Kimi-K2’s native tool-parsing logic.
202
+ For more information, see the [Tool Calling Guide](docs/tool_call_guidance.md).
203
+
204
+ ---
205
+
206
+ ## 6. License
207
+
208
+ Both the code repository and the model weights are released under the [Modified MIT License](LICENSE).
209
+
210
+ ---
211
+
212
+ ## 7. Third Party Notices
213
+
214
+ See [THIRD PARTY NOTICES](THIRD_PARTY_NOTICES.md)
215
+
216
+ ---
217
+
218
+ ## 7. Contact Us
219
+
220
+ If you have any questions, please reach out at [support@moonshot.cn](mailto:support@moonshot.cn).