Datasets:

ArXiv:
Libraries:
License:
File size: 6,065 Bytes
8ac51f6
 
 
 
 
 
 
 
 
 
 
 
 
6354f83
 
 
 
 
a20ebd8
 
ca463ad
a20ebd8
 
 
aae5c19
2c7cfb9
ba01867
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c7cfb9
ba01867
2c7cfb9
ba01867
2c7cfb9
ba01867
2c7cfb9
ba01867
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b080de5
a20ebd8
 
 
 
 
 
 
 
 
 
4bdfb1b
 
4f82508
 
bc29265
 
 
 
 
 
 
 
4f82508
 
a20ebd8
 
4f82508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a20ebd8
 
17a9b33
4f82508
2c7cfb9
a20ebd8
4f82508
 
 
 
 
 
 
 
 
2c7cfb9
a20ebd8
4f82508
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
---
configs:
  - config_name: default

license: cc-by-nc-4.0
tags:
  - croissant
size_categories:
  - 1K<n<10K
task_categories:
  - image-to-3d
---

# OpenMaterial: A Comprehensive Dataset of Complex Materials for 3D Reconstruction
 
 Zheng Dang<sup>1</sup>  ·  Jialu Huang<sup>2</sup>  ·  Fei Wang<sup>2</sup>  ·  Mathieu Salzmann<sup>1</sup>

 <sup>1</sup>EPFL CVLAb, Switzerland <sup>2</sup> Xi'an Jiaotong University, China
 

[Paper](https://arxiv.org/abs/2406.08894)              

[WebPage](https://christy61.github.io/openmaterial.github.io/)

<img src="https://cdn-uploads.huggingface.co/production/uploads/665def1b1d30854dbbde3e87/PBaPM9PAickSO8LnmWF9z.png" width="92%"/>

---
## **📌 Update log** 

### 🗓️ March 2025

- Updated **degnosie scripts** to identify and address rare missing cases caused by server-side cluster fluctuations.
    
- Refined benchmark results for selected algorithms (_NeRO_, _GES_, _GaussianShader_) on the **Ablation Dataset**.
    
- ⚠️ Note: Main benchmark results remain **unaffected**.
    
- 🔗 Updated results available at: [https://christy61.github.io/openmaterial.github.io/]

---

### 🗓️ November 2024

- Released **benchmark results** on the **Ablation Dataset**, with strict control over **shape**, **material**, and **lighting** variables.

- Benchmarked a set of representative algorithms across two tasks:

    - _Novel View Synthesis_: Gaussian Splatting, Instant-NGP, 2DGS, PGSR, GES, GSDR, GaussianShader

    - _3D Reconstruction_: Instant-NeuS, NeuS2, 2DGS, PGSR, NeRO

- Updated evaluation scripts to **incorporate new algorithms** and support the **Ablation Dataset benchmarking format**.

- Improved **evaluation code** to better visualize benchmarking comparisons.

- 🔗 Full results available at: [https://christy61.github.io/openmaterial.github.io/]


### 🗓️ October 2024

- Released extended **benchmark results** on the **Main Dataset**:

    - _7 Novel View Synthesis methods_: Gaussian Splatting, Instant-NGP, 2DGS, PGSR, GES, GSDR, GaussianShader
    
    - _6 3D Reconstruction methods_: Instant-NeuS, NeuS2, 2DGS, PGSR, NeRO, NeRRF
 
- Highlighted algorithms specialized for **challenging materials**: NeRO, NeRRF, GSDR, GaussianShader

- Updated evaluation scripts to **incorporate new algorithms**.

### 🗓️ September 2024

- Introduced a new **Ablation Dataset** for controlled analysis of 3D reconstruction and view synthesis.
    
- Controlled variables:
    
    - **Objects**: Vase, Snail, Boat, Motor Bike, Statue
        
    - **Lighting**: Indoor, Daytime Garden, Nighttime Street
        
    - **Materials**: Conductor, Dielectric Plastic, Rough Conductor, Rough Dielectric, Rough Plastic, Diffuse
        
- Total: **105 unique scenes** (5 × 3 × 7)
    
- 🔗 Data is now available.
    
### 🗓️ July 2024

- Dataset restructured for **flexible material-type-based downloading**.
    
- Users can now download subsets of data focusing on specific material categories (e.g., _diffuse_, _conductor_, _dielectric_, _plastic_).
    
- 📦 Updated **download scripts** included.
    
### 🗓️ May 2024

- Released **OpenMaterial**, a semi-synthetic dataset featuring:
    
    - **1001 unique shapes**, **295 materials** with lab-measured IOR spectra
        
    - **723 lighting conditions**
        
    - High-res images (1600×1200), camera poses, depth, 3D models, masks
        
    - Stored in standard **COLMAP** format
        
- Released a **new benchmark** including a novel evaluation dimension: **material type**
    
- Benchmarked methods: Instant-NeuS, NeuS2, Gaussian Splatting, Instant-NGP

## Dataset

[+] 1001 unique shapes

[+] 295 material types with laboratory measured IOR

[+] 723 lighting conditions

[+] Physical based rendering with costomized BSDF for each material type

[+] 1001 uniques scenes, for each scene 90 images (50 for training, 40 for testing) with object mask, depth, camera pose, materail type annotations.

## Example Images

<div style="display: flex; align-items: flex-start; justify-content: flex-start; gap:2%;">
  <img src="https://cdn-uploads.huggingface.co/production/uploads/638884d65588554e2425e625/dlFmsdbJqFKnDUN3yg_S1.png" style="width:40%;" alt="Example 1"/>
  <img src="https://cdn-uploads.huggingface.co/production/uploads/638884d65588554e2425e625/A9mmqEVW_3BgMWey5cPrC.png" style="width:40%;" alt="Example 2"/>
</div>
<div style="display: flex; align-items: flex-start; justify-content: flex-start; gap:2%; margin-top:-2em;">
  <img src="https://cdn-uploads.huggingface.co/production/uploads/638884d65588554e2425e625/1k_zGTTZAYyJtcIDo0FOO.png" style="width:40%;" alt="Example 3"/>
  <img src="https://cdn-uploads.huggingface.co/production/uploads/638884d65588554e2425e625/w5P_MvlTXt6FMwEDMwPwe.png" style="width:40%;" alt="Example 4"/>
</div>


## Data structure

```
.
├── name_of_object/[lighing_condition_name]-[material_type]-[material_name]
│   ├── train
│   │   ├── images
│   │   │   ├── 000000.png
│   │   │   |-- ...
│   │   └── mask
│   │   │   ├── 000000.png
│   │   │   |-- ...
│   │   └── depth
│   │       ├── 000000.png
│   │       |-- ...
│   ├── test
│   │   ├── images
│   │   │   ├── 000000.png
│   │   │   |-- ...
│   │   └── mask
│   │   │   ├── 000000.png
│   │   │   |-- ...
│   │   └── depth
│   │       ├── 000000.png
│   │       |-- ...
│   └── transformas_train.json
│   └── transformas_test.json

```

## Usage

Check out our [`Example Code`](https://github.com/Christy61/OpenMaterial) for implementation details!

<!-- ## Citation

If you find our work useful in your research, please cite:

```
@article{Dang24,
	title={OpenMaterial: A Comprehensive Dataset of Complex Materials for 3D Reconstruction},
	author={Zheng Dang and Jialu Huang and Fei Wang and Mathieu Salzmann},
	journal={arXiv preprint arXiv:2406.08894},
	year={2024}
}
 -->

```