File size: 6,065 Bytes
8ac51f6 6354f83 a20ebd8 ca463ad a20ebd8 aae5c19 2c7cfb9 ba01867 2c7cfb9 ba01867 2c7cfb9 ba01867 2c7cfb9 ba01867 2c7cfb9 ba01867 b080de5 a20ebd8 4bdfb1b 4f82508 bc29265 4f82508 a20ebd8 4f82508 a20ebd8 17a9b33 4f82508 2c7cfb9 a20ebd8 4f82508 2c7cfb9 a20ebd8 4f82508 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
---
configs:
- config_name: default
license: cc-by-nc-4.0
tags:
- croissant
size_categories:
- 1K<n<10K
task_categories:
- image-to-3d
---
# OpenMaterial: A Comprehensive Dataset of Complex Materials for 3D Reconstruction
Zheng Dang<sup>1</sup> · Jialu Huang<sup>2</sup> · Fei Wang<sup>2</sup> · Mathieu Salzmann<sup>1</sup>
<sup>1</sup>EPFL CVLAb, Switzerland <sup>2</sup> Xi'an Jiaotong University, China
[Paper](https://arxiv.org/abs/2406.08894)
[WebPage](https://christy61.github.io/openmaterial.github.io/)
<img src="https://cdn-uploads.huggingface.co/production/uploads/665def1b1d30854dbbde3e87/PBaPM9PAickSO8LnmWF9z.png" width="92%"/>
---
## **📌 Update log**
### 🗓️ March 2025
- Updated **degnosie scripts** to identify and address rare missing cases caused by server-side cluster fluctuations.
- Refined benchmark results for selected algorithms (_NeRO_, _GES_, _GaussianShader_) on the **Ablation Dataset**.
- ⚠️ Note: Main benchmark results remain **unaffected**.
- 🔗 Updated results available at: [https://christy61.github.io/openmaterial.github.io/]
---
### 🗓️ November 2024
- Released **benchmark results** on the **Ablation Dataset**, with strict control over **shape**, **material**, and **lighting** variables.
- Benchmarked a set of representative algorithms across two tasks:
- _Novel View Synthesis_: Gaussian Splatting, Instant-NGP, 2DGS, PGSR, GES, GSDR, GaussianShader
- _3D Reconstruction_: Instant-NeuS, NeuS2, 2DGS, PGSR, NeRO
- Updated evaluation scripts to **incorporate new algorithms** and support the **Ablation Dataset benchmarking format**.
- Improved **evaluation code** to better visualize benchmarking comparisons.
- 🔗 Full results available at: [https://christy61.github.io/openmaterial.github.io/]
### 🗓️ October 2024
- Released extended **benchmark results** on the **Main Dataset**:
- _7 Novel View Synthesis methods_: Gaussian Splatting, Instant-NGP, 2DGS, PGSR, GES, GSDR, GaussianShader
- _6 3D Reconstruction methods_: Instant-NeuS, NeuS2, 2DGS, PGSR, NeRO, NeRRF
- Highlighted algorithms specialized for **challenging materials**: NeRO, NeRRF, GSDR, GaussianShader
- Updated evaluation scripts to **incorporate new algorithms**.
### 🗓️ September 2024
- Introduced a new **Ablation Dataset** for controlled analysis of 3D reconstruction and view synthesis.
- Controlled variables:
- **Objects**: Vase, Snail, Boat, Motor Bike, Statue
- **Lighting**: Indoor, Daytime Garden, Nighttime Street
- **Materials**: Conductor, Dielectric Plastic, Rough Conductor, Rough Dielectric, Rough Plastic, Diffuse
- Total: **105 unique scenes** (5 × 3 × 7)
- 🔗 Data is now available.
### 🗓️ July 2024
- Dataset restructured for **flexible material-type-based downloading**.
- Users can now download subsets of data focusing on specific material categories (e.g., _diffuse_, _conductor_, _dielectric_, _plastic_).
- 📦 Updated **download scripts** included.
### 🗓️ May 2024
- Released **OpenMaterial**, a semi-synthetic dataset featuring:
- **1001 unique shapes**, **295 materials** with lab-measured IOR spectra
- **723 lighting conditions**
- High-res images (1600×1200), camera poses, depth, 3D models, masks
- Stored in standard **COLMAP** format
- Released a **new benchmark** including a novel evaluation dimension: **material type**
- Benchmarked methods: Instant-NeuS, NeuS2, Gaussian Splatting, Instant-NGP
## Dataset
[+] 1001 unique shapes
[+] 295 material types with laboratory measured IOR
[+] 723 lighting conditions
[+] Physical based rendering with costomized BSDF for each material type
[+] 1001 uniques scenes, for each scene 90 images (50 for training, 40 for testing) with object mask, depth, camera pose, materail type annotations.
## Example Images
<div style="display: flex; align-items: flex-start; justify-content: flex-start; gap:2%;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/638884d65588554e2425e625/dlFmsdbJqFKnDUN3yg_S1.png" style="width:40%;" alt="Example 1"/>
<img src="https://cdn-uploads.huggingface.co/production/uploads/638884d65588554e2425e625/A9mmqEVW_3BgMWey5cPrC.png" style="width:40%;" alt="Example 2"/>
</div>
<div style="display: flex; align-items: flex-start; justify-content: flex-start; gap:2%; margin-top:-2em;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/638884d65588554e2425e625/1k_zGTTZAYyJtcIDo0FOO.png" style="width:40%;" alt="Example 3"/>
<img src="https://cdn-uploads.huggingface.co/production/uploads/638884d65588554e2425e625/w5P_MvlTXt6FMwEDMwPwe.png" style="width:40%;" alt="Example 4"/>
</div>
## Data structure
```
.
├── name_of_object/[lighing_condition_name]-[material_type]-[material_name]
│ ├── train
│ │ ├── images
│ │ │ ├── 000000.png
│ │ │ |-- ...
│ │ └── mask
│ │ │ ├── 000000.png
│ │ │ |-- ...
│ │ └── depth
│ │ ├── 000000.png
│ │ |-- ...
│ ├── test
│ │ ├── images
│ │ │ ├── 000000.png
│ │ │ |-- ...
│ │ └── mask
│ │ │ ├── 000000.png
│ │ │ |-- ...
│ │ └── depth
│ │ ├── 000000.png
│ │ |-- ...
│ └── transformas_train.json
│ └── transformas_test.json
```
## Usage
Check out our [`Example Code`](https://github.com/Christy61/OpenMaterial) for implementation details!
<!-- ## Citation
If you find our work useful in your research, please cite:
```
@article{Dang24,
title={OpenMaterial: A Comprehensive Dataset of Complex Materials for 3D Reconstruction},
author={Zheng Dang and Jialu Huang and Fei Wang and Mathieu Salzmann},
journal={arXiv preprint arXiv:2406.08894},
year={2024}
}
-->
```
|