"""Create a Hugging Face dataset from the JamendoLyrics dataset in its original layout.""" # This script is adapted from: https://huggingface.co/datasets/jamendolyrics/jamendolyrics/blob/main/create_hf_dataset.py # %% import glob import shutil from pathlib import Path import datasets # %% LANGUAGE_MAP = { # "English": "en", # "Spanish": "es", # "German": "de", # "French": "fr", "Portuguese": "pt", "Italian": "it", } # %% metadata = datasets.load_dataset( "csv", data_files={"test": "JamendoLyrics.csv"}, split="test", ) # %% features = datasets.Features( { "name": datasets.Value("string"), "file_name": datasets.Value("string"), "url": datasets.Value("string"), "artist": datasets.Value("string"), "title": datasets.Value("string"), "genre": datasets.Value("string"), "license_type": datasets.Value("string"), "language": datasets.Value("string"), "lyric_overlap": datasets.Value("bool"), "polyphonic": datasets.Value("bool"), "non_lexical": datasets.Value("bool"), "text": datasets.Value("string"), "words": [ { "start": datasets.Value("float32"), "end": datasets.Value("float32"), "text": datasets.Value("string"), "line_end": datasets.Value("bool"), } ], "lines": [ { "start": datasets.Value("float32"), "end": datasets.Value("float32"), "text": datasets.Value("string"), } ], } ) features_lines_in = datasets.Features( { "start_time": datasets.Value(dtype="float32", id=None), "end_time": datasets.Value(dtype="float32", id=None), "lyrics_line": datasets.Value(dtype="string", id=None), } ) features_words_in = datasets.Features( { "word_start": datasets.Value(dtype="float32", id=None), "word_end": datasets.Value(dtype="float32", id=None), "line_end": datasets.Value(dtype="float32", id=None), } ) # %% data = { "name": [x.removesuffix(".mp3") for x in metadata["Filepath"]], "url": metadata["URL"], "artist": metadata["Artist"], "title": metadata["Title"], "genre": metadata["Genre"], "license_type": metadata["LicenseType"], "language": [LANGUAGE_MAP[x] for x in metadata["Language"]], "lyric_overlap": metadata["LyricOverlap"], "polyphonic": metadata["Polyphonic"], "non_lexical": metadata["NonLexical"], "text": [], "lines": [], "words": [], } data["file_name"] = [ Path("subsets") / lg / "mp3" / f"{n}.mp3" for lg, n in zip(data["language"], data["name"]) ] for name in data["name"]: data["text"].append((Path("lyrics") / (name + ".txt")).read_text()) lines_csv_path = Path("annotations") / "lines" / glob.escape(name + ".csv") words_csv_path = Path("annotations") / "words" / glob.escape(name + ".csv") if lines_csv_path.exists(): lines = datasets.load_dataset( "csv", features=features_lines_in, data_files={"test": str(lines_csv_path)}, split="test", ) data["lines"].append( [ { "start": li["start_time"], "end": li["end_time"], "text": li["lyrics_line"], } for li in lines ] ) else: data["lines"].append([]) if words_csv_path.exists(): words = datasets.load_dataset( "csv", features=features_words_in, data_files={"test": str(words_csv_path)}, split="test", ) words_text = (Path("lyrics") / (name + ".words.txt")).read_text().splitlines() assert len(words) == len(words_text) assert all(w["line_end"] in [None, w["word_end"]] for w in words) data["words"].append( [ { "start": w["word_start"], "end": w["word_end"], "text": text, "line_end": w["line_end"] is not None, } for w, text in zip(words, words_text) ] ) else: data["words"].append([]) # %% dataset = datasets.Dataset.from_dict(data, features=features) # %% dataset # %% # Divide the MP3 files by language. Hugging Face requires each subset and its metadadta to be in # a separate directory. However, for backwards compatibility, we also want to keep the top-level # "mp3" directory and replace the MP3 files with symlinks into the subsets. # Back up the directory with the original MP3 files if not Path("mp3_orig").exists(): for path in Path("mp3").glob("*.mp3"): if path.is_symlink(): target = path.resolve() path.unlink() target.rename(path) Path("mp3").rename("mp3_orig") elif Path("mp3").exists(): shutil.rmtree("mp3") Path("mp3").mkdir(exist_ok=True) subsets_dir = Path("subsets") if subsets_dir.exists(): shutil.rmtree(subsets_dir) subsets_dir.mkdir() # Create language subsets and: # - hard link the files from mp3_orig to subsets # - add symlinks from mp3 into subsets for language in ["en", "es", "de", "fr", "it", "pt"]: subset_dir = subsets_dir / language subset_dir.mkdir() subset = dataset.select( [i for i in range(len(dataset)) if dataset["language"][i] == language] ) subset_file_names = subset["file_name"] subset = subset.remove_columns("file_name").add_column( "file_name", [str(Path(p).relative_to(subset_dir)) for p in subset_file_names] ) subset.to_json(subset_dir / "metadata.jsonl") (subset_dir / "mp3").mkdir() for name in subset["name"]: (subset_dir / "mp3" / f"{name}.mp3").hardlink_to( Path("mp3_orig") / f"{name}.mp3" ) (Path("mp3") / f"{name}.mp3").symlink_to( Path("..") / subset_dir / "mp3" / f"{name}.mp3" ) # Create the top-level data file for the "all" config dataset.to_json("metadata.jsonl") # %%