FutureMa commited on
Commit
57a703b
·
verified ·
1 Parent(s): 55b6cbc

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +49 -4
README.md CHANGED
@@ -16,6 +16,14 @@ size_categories:
16
 
17
  # EvasionBench
18
 
 
 
 
 
 
 
 
 
19
  EvasionBench is a benchmark dataset for detecting **evasive answers** in earnings call Q&A sessions. The task is to classify how directly corporate management addresses questions from financial analysts.
20
 
21
  ## Dataset Description
@@ -26,7 +34,7 @@ EvasionBench is a benchmark dataset for detecting **evasive answers** in earning
26
 
27
  ### Dataset Summary
28
 
29
- This dataset contains 16,726 question-answer pairs from earnings call transcripts, each labeled with one of three evasion levels. The labels were generated using the Eva-4B model, a fine-tuned classifier specifically trained for financial discourse evasion detection.
30
 
31
  ### Supported Tasks
32
 
@@ -82,7 +90,7 @@ English
82
  ```python
83
  from datasets import load_dataset
84
 
85
- dataset = load_dataset("path/to/EvasionBench")
86
  ```
87
 
88
  ### Loading from Parquet
@@ -93,6 +101,43 @@ import pandas as pd
93
  df = pd.read_parquet("evasionbench_17k_eva4b_labels_dedup.parquet")
94
  ```
95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96
  ## Dataset Creation
97
 
98
  ### Source Data
@@ -101,7 +146,7 @@ The question-answer pairs are derived from publicly available earnings call tran
101
 
102
  ### Annotation Process
103
 
104
- Labels were generated using **Eva-4B**, a 4B parameter model fine-tuned specifically for evasion detection in financial discourse. Eva-4B achieves 84.9% Macro-F1 on the EvasionBench evaluation set, outperforming frontier LLMs including Claude Opus 4.5 and Gemini 3 Flash.
105
 
106
  ## Considerations for Using the Data
107
 
@@ -114,7 +159,7 @@ This dataset can be used to:
114
 
115
  ### Limitations
116
 
117
- - Labels are model-generated (Eva-4B) rather than human-annotated
118
  - The dataset reflects the distribution of evasion patterns in the source data
119
  - Performance may vary across different industries or time periods
120
 
 
16
 
17
  # EvasionBench
18
 
19
+ <p align="center">
20
+ <a href="https://iiiiqiiii.github.io/EvasionBench"><img src="https://img.shields.io/badge/Project-Page-blue?style=for-the-badge" alt="Project Page"></a>
21
+ <a href="https://huggingface.co/FutureMa/Eva-4B-V2"><img src="https://img.shields.io/badge/🤗-Model-yellow?style=for-the-badge" alt="Model"></a>
22
+ <a href="https://github.com/IIIIQIIII/EvasionBench"><img src="https://img.shields.io/badge/GitHub-Repo-black?style=for-the-badge&logo=github" alt="GitHub"></a>
23
+ <a href="https://colab.research.google.com/github/IIIIQIIII/EvasionBench/blob/main/scripts/eva4b_inference.ipynb"><img src="https://img.shields.io/badge/Colab-Quick_Start-F9AB00?style=for-the-badge&logo=googlecolab" alt="Open In Colab"></a>
24
+ <a href="https://arxiv.org/abs/2602.xxxxx"><img src="https://img.shields.io/badge/arXiv-Paper-red?style=for-the-badge" alt="Paper"></a>
25
+ </p>
26
+
27
  EvasionBench is a benchmark dataset for detecting **evasive answers** in earnings call Q&A sessions. The task is to classify how directly corporate management addresses questions from financial analysts.
28
 
29
  ## Dataset Description
 
34
 
35
  ### Dataset Summary
36
 
37
+ This dataset contains 16,726 question-answer pairs from earnings call transcripts, each labeled with one of three evasion levels. The labels were generated using the Eva-4B-V2 model, a fine-tuned classifier specifically trained for financial discourse evasion detection.
38
 
39
  ### Supported Tasks
40
 
 
90
  ```python
91
  from datasets import load_dataset
92
 
93
+ dataset = load_dataset("FutureMa/EvasionBench")
94
  ```
95
 
96
  ### Loading from Parquet
 
101
  df = pd.read_parquet("evasionbench_17k_eva4b_labels_dedup.parquet")
102
  ```
103
 
104
+ ### Quick Start: Inference with Eva-4B-V2
105
+
106
+ ````python
107
+ from datasets import load_dataset
108
+ from transformers import pipeline
109
+
110
+ # Load dataset
111
+ dataset = load_dataset("FutureMa/EvasionBench")
112
+
113
+ # Load model using text-generation pipeline
114
+ pipe = pipeline("text-generation", model="FutureMa/Eva-4B-V2", device_map="auto")
115
+
116
+ # Get a sample
117
+ sample = dataset["train"][0]
118
+ question = sample["question"]
119
+ answer = sample["answer"]
120
+
121
+ # Prepare prompt
122
+ prompt = f"""You are a financial analyst. Your task is to Detect Evasive Answers in Financial Q&A
123
+
124
+ Question: {question}
125
+ Answer: {answer}
126
+
127
+ Response format:
128
+ ```json
129
+ {{"label": "direct|intermediate|fully_evasive"}}
130
+ ```
131
+
132
+ Answer in ```json content, no other text"""
133
+
134
+ # Run inference
135
+ result = pipe(prompt, max_new_tokens=64, do_sample=False)
136
+ print(result[0]["generated_text"])
137
+ ````
138
+
139
+ For a complete inference example with batch processing and evaluation, see our [Colab notebook](https://colab.research.google.com/github/IIIIQIIII/EvasionBench/blob/main/scripts/eva4b_inference.ipynb).
140
+
141
  ## Dataset Creation
142
 
143
  ### Source Data
 
146
 
147
  ### Annotation Process
148
 
149
+ Labels were generated using **Eva-4B-V2**, a 4B parameter model fine-tuned specifically for evasion detection in financial discourse. Eva-4B-V2 achieves 84.9% Macro-F1 on the EvasionBench evaluation set, outperforming frontier LLMs including Claude Opus 4.5 and Gemini 3 Flash.
150
 
151
  ## Considerations for Using the Data
152
 
 
159
 
160
  ### Limitations
161
 
162
+ - Labels are model-generated (Eva-4B-V2) rather than human-annotated
163
  - The dataset reflects the distribution of evasion patterns in the source data
164
  - Performance may vary across different industries or time periods
165