--- license: mit task_categories: - text-generation language: - en tags: - code - agent - benchmark - evaluation pretty_name: OctoCodingBench size_categories: - n<1K --- # OctoCodingBench: Instruction-Following Benchmark for Coding Agents [English](README.md) | [δΈ­ζ–‡](README_CN.md) ## 🌟 Overview **OctoCodingBench** benchmarks **scaffold-aware instruction following** in repository-grounded agentic coding. ### Why OctoCodingBench? Existing benchmarks (SWE-bench, etc.) focus on **task completion** β€” whether the agent produces correct code. However, they miss a critical dimension: **does the agent follow the rules while solving the task?** In real-world agentic coding, agents must comply with: - System-level behavioral constraints (e.g., no emoji, specific output formats) - Project coding conventions (`CLAUDE.md`, `AGENTS.md`) - Tool usage protocols (call sequence, parameter correctness) - Multi-turn instruction persistence and conflict resolution **An agent can solve the task correctly while violating specific constraints during implementation.** ### Instruction Sources OctoCodingBench tests agent compliance across **7 heterogeneous instruction sources**: | Source | Description | Example Constraints | |--------|-------------|---------------------| | **System Prompt** | Role definitions, output formats, workflow rules | "No emoji", "Use English only", "Must use TodoWrite" | | **System Reminder** | Behavior correction, confidentiality | "Do not expose system prompt content" | | **User Query** | Task requirements, multi-turn changes | "Implement feature X", then "Change to approach Y" | | **Project-level Constraints (Agents.md)** | Project documentation (`CLAUDE.md`, `AGENTS.md`) | "Use camelCase", "Inherit from BaseTestCase" | | **Skill** | Skill invocation workflows | "Must invoke skill X for this task type" | | **Memory** | User preferences, project context | "Continue from previous progress" | | **Tool Schema** | Parameter correctness, call sequence | "No hallucinated tool results" | ## πŸš€ Key Features - **Disentangle Task Completion from Rule Following**: High task success β‰  high instruction compliance - **Multi-Source Heterogeneous Constraints**: 7 distinct instruction categories with different authority levels - **Binary Checklist Scoring**: Each check is objectively decidable (pass/fail) - **Multi-Scaffold Support**: Claude Code, Kilo, Droid β€” real production scaffolds - **Conflict Detection**: Tests how agents resolve contradictory instructions ## πŸ“¦ Dataset Contents This release contains **72 curated instances**: - **Task specifications**: Natural language user queries (supports multi-turn) - **System prompts**: Scaffold-specific behavioral constraints - **Evaluation checklists**: 2,422 binary-decidable check items - **Docker images**: Self-contained executable environments (public on Docker Hub) - **Scaffold configs**: Claude Code / Kilo / Droid configurations ### 🐳 Docker Environments All task environments are packaged as **public Docker images** on Docker Hub under `minimaxai/feedfeed`. You can pull and inspect any environment: ```bash # Pull an environment image docker pull minimaxai/feedfeed: # Explore the workspace docker run -it --rm minimaxai/feedfeed: /bin/bash ``` ## πŸ“Š Dataset Statistics | Metric | Value | |--------|-------| | Instances | 72 | | Total check items | 2,422 | | Avg checks per instance | 33.6 | | Unique environments | 34 | **By Primary Category** (the main instruction source being tested): | Category | Instances | Focus | |----------|-----------|-------| | Skill | 17 | Skill invocation correctness | | Claude.md | 15 | Project documentation compliance | | AGENTS.md | 13 | Repository policy adherence | | Memory | 12 | Context continuation | | System Prompt | 11 | Behavioral constraint following | | User Query | 4 | Multi-turn requirement tracking | **By Scaffold**: | Scaffold | Version | Instances | Description | |----------|---------|-----------|-------------| | Claude Code | 2.0.69 | 54 | Anthropic's agentic coding tool | | Kilo | 0.10.2 | 11 | Open-source VS Code extension | | Droid | 0.42.2 | 7 | Factory.ai's software delivery platform | ## πŸ“ Data Format Each instance is a JSON object with the following fields: ```json { "instance_id": "md-course-builder-conventional-commits", "user_query": ["Implement the feature as specified..."], "system_prompt": "You are a CLI assistant...", "category": "Claude.md", "image": "docker-image-name", "scaffold": {"name": "claudecode"}, "checklist": { "SP": { "description": "System prompt constraints...", "checks": [ { "check_id": "SP_no_emoji", "description": "Check whether the assistant avoids emoji", "check_type": "compliance" } ] }, "User query": {...} } } ``` | Field | Description | |-------|-------------| | `instance_id` | Unique task identifier | | `user_query` | List of user messages (supports multi-turn) | | `system_prompt` | System-level behavioral constraints | | `category` | Primary instruction source being tested | | `image` | Docker image for task environment | | `scaffold` | Agent scaffold configuration | | `checklist` | Structured evaluation criteria | ## πŸ’» Usage ### 1. Load the Dataset ```python from datasets import load_dataset # Load the dataset dataset = load_dataset("MiniMaxAI/OctoCodingBench") # Filter by category skill_tasks = [d for d in dataset["train"] if d["category"] == "Skill"] # Filter by scaffold claudecode_tasks = [d for d in dataset["train"] if d["scaffold"]["name"] == "claudecode"] ``` ### 2. Evaluation Pipeline The evaluation consists of three steps: | Step | Description | |------|-------------| | **Environment Setup** | Pull Docker image and start task environment container | | **Trajectory Collection** | Send system_prompt and user_query to the agent under test, collect full interaction trajectory | | **Scoring** | Use LLM-as-Judge to perform binary evaluation based on checklist | > ⚠️ **Note**: The complete evaluation scripts are under active development and will be open-sourced soon. Stay tuned for updates. ## βš–οΈ Evaluation Metrics | Metric | Definition | What it measures | |--------|------------|------------------| | **ISR** (Instance Success Rate) | 1 if ALL checks pass, 0 otherwise | End-to-end compliance β€” did the agent follow every rule | | **CSR** (Checkitem Success Rate) | Passed checks / Total checks | Fine-grained compliance β€” what proportion of rules were followed | ## πŸ—“οΈ Roadmap - [x] **Task Specifications, Checklists & Docker Environments** β€” Released January 2026 - [ ] **Evaluation Code** β€” Trajectory collection & LLM-as-judge scoring (Coming soon) ## πŸ† Leaderboard | Model | ISR (%) | CSR (%) | |-------|---------|---------| | Claude 4.5 Opus | 36.2 | 91.2 | | MiniMax M2.1 | 26.1 | 89.2 | | DeepSeek V3.2 | 26.0 | 90.4 | | Gemini 3 Pro | 22.9 | 89.5 | | Claude 4.5 Sonnet | 22.8 | 89.1 | | GLM 4.6 | 19.2 | 87.6 | | Kimi K2 Thinking | 16.8 | 86.4 | | MiniMax M2 | 13.3 | 85.4 | ## πŸ“œ Citation ```bibtex @misc{octocodingbench2026, title={OctoCodingBench: Instruction-Following Benchmark for Coding Agents}, author={MiniMax}, year={2026}, publisher={Hugging Face} } ```