Update README.md
Browse files
README.md
CHANGED
|
@@ -1,36 +1,295 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: cc-by-sa-4.0
|
| 3 |
-
dataset_info:
|
| 4 |
-
features:
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
splits:
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
download_size: 660289122
|
| 30 |
-
dataset_size: 1966003072
|
| 31 |
-
configs:
|
| 32 |
-
- config_name: default
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: cc-by-sa-4.0
|
| 3 |
+
dataset_info:
|
| 4 |
+
features:
|
| 5 |
+
- name: id
|
| 6 |
+
dtype: string
|
| 7 |
+
- name: source
|
| 8 |
+
dtype: string
|
| 9 |
+
- name: task
|
| 10 |
+
dtype: string
|
| 11 |
+
- name: type
|
| 12 |
+
dtype: string
|
| 13 |
+
- name: instruction
|
| 14 |
+
dtype: string
|
| 15 |
+
- name: question
|
| 16 |
+
dtype: string
|
| 17 |
+
- name: options
|
| 18 |
+
dtype: string
|
| 19 |
+
- name: answer
|
| 20 |
+
dtype: string
|
| 21 |
+
- name: context
|
| 22 |
+
dtype: string
|
| 23 |
+
- name: evidence
|
| 24 |
+
dtype: string
|
| 25 |
+
splits:
|
| 26 |
+
- name: test
|
| 27 |
+
num_bytes: 1966003072
|
| 28 |
+
num_examples: 1934
|
| 29 |
+
download_size: 660289122
|
| 30 |
+
dataset_size: 1966003072
|
| 31 |
+
configs:
|
| 32 |
+
- config_name: default
|
| 33 |
+
data_files:
|
| 34 |
+
- split: test
|
| 35 |
+
path: data/test-*
|
| 36 |
+
---
|
| 37 |
+
|
| 38 |
+
<div align="center">
|
| 39 |
+
|
| 40 |
+
<h1><b>LooGLE v2</b></h1>
|
| 41 |
+
|
| 42 |
+
**The official repository of "LooGLE v2: Are LLMs Ready for Real World Long Dependency Challenges?"**
|
| 43 |
+
|
| 44 |
+
**NeurIPS DB Track 2025**
|
| 45 |
+
|
| 46 |
+
<div>
|
| 47 |
+
<a href="https://huggingface.co/datasets/MulabPKU/LooGLE-v2">
|
| 48 |
+
<img src="https://img.shields.io/badge/π€-Dataset-blue" alt="Dataset">
|
| 49 |
+
</a>
|
| 50 |
+
<a href="https://mulabpku.github.io/LooGLE-v2/">
|
| 51 |
+
<img src="https://img.shields.io/badge/π-Website-green" alt="Website">
|
| 52 |
+
</a>
|
| 53 |
+
<a href="https://arxiv.org/abs/2510.22548">
|
| 54 |
+
<img src="https://img.shields.io/badge/π-Paper-red" alt="Paper">
|
| 55 |
+
</a>
|
| 56 |
+
<a href="https://opensource.org/licenses/MIT">
|
| 57 |
+
<img src="https://img.shields.io/badge/License-MIT-yellow.svg" alt="License">
|
| 58 |
+
</a>
|
| 59 |
+
</div>
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
</div>
|
| 64 |
+
|
| 65 |
+
---
|
| 66 |
+
|
| 67 |
+
## π Overview
|
| 68 |
+
|
| 69 |
+
LooGLE v2 is a comprehensive benchmark designed to evaluate large language models on their ability to understand and process long-context documents with complex dependencies. The benchmark covers diverse domains including **Finance**, **Law**, **Code**, and **Game**.
|
| 70 |
+
|
| 71 |
+
---
|
| 72 |
+
|
| 73 |
+
## π Quick Start
|
| 74 |
+
|
| 75 |
+
### π¦ Installation
|
| 76 |
+
|
| 77 |
+
```bash
|
| 78 |
+
# Create environment with Python 3.10
|
| 79 |
+
conda create -n loogle-v2 python=3.10
|
| 80 |
+
conda activate loogle-v2
|
| 81 |
+
|
| 82 |
+
# Install dependencies
|
| 83 |
+
pip install -r requirements.txt
|
| 84 |
+
|
| 85 |
+
# Install Flash Attention
|
| 86 |
+
pip install flash-attn==2.6.3 --no-build-isolation
|
| 87 |
+
|
| 88 |
+
# Or you can download flash_attn-2.6.3-cp310-cp310-linux_x86_64.whl
|
| 89 |
+
pip install flash_attn-2.6.3-cp310-cp310-linux_x86_64.whl
|
| 90 |
+
```
|
| 91 |
+
|
| 92 |
+
---
|
| 93 |
+
|
| 94 |
+
## π Dataset
|
| 95 |
+
|
| 96 |
+
Download the LooGLE v2 dataset from Hugging Face:
|
| 97 |
+
|
| 98 |
+
```bash
|
| 99 |
+
git clone https://huggingface.co/datasets/MuLabPKU/LooGLE-v2 ./datasets/LooGLE-v2
|
| 100 |
+
# Or use the Hugging Face CLI to download:
|
| 101 |
+
hf download MuLabPKU/LooGLE-v2 --repo-type dataset --local-dir ./datasets/LooGLE-v2
|
| 102 |
+
```
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
---
|
| 106 |
+
|
| 107 |
+
## π οΈ Usage
|
| 108 |
+
|
| 109 |
+
### βοΈ Configuration
|
| 110 |
+
|
| 111 |
+
**vLLM server (for `predict.py`):**
|
| 112 |
+
```bash
|
| 113 |
+
python -m vllm.entrypoints.openai.api_server \
|
| 114 |
+
--model path/to/your/model \
|
| 115 |
+
--port 8000 \
|
| 116 |
+
--max-model-len 131072
|
| 117 |
+
```
|
| 118 |
+
|
| 119 |
+
**Model entry (`config/models.jsonl`, shared by both scripts):**
|
| 120 |
+
```json
|
| 121 |
+
{
|
| 122 |
+
"name": "your-model-name",
|
| 123 |
+
"model": "path/to/model",
|
| 124 |
+
"max_len": 131072,
|
| 125 |
+
"base_url": "http://localhost:8000/v1",
|
| 126 |
+
"api_key": "your-api-key"
|
| 127 |
+
}
|
| 128 |
+
```
|
| 129 |
+
|
| 130 |
+
Transformers mode (`predict_transformers.py`) does not need a server; it still reuses `name/model/max_len` from this config. Ensure `base_url` matches your vLLM port when using the server route.
|
| 131 |
+
|
| 132 |
+
### π Pre-compute RAG Contexts (optional)
|
| 133 |
+
|
| 134 |
+
If you plan to run `--use_rag`, first generate `context_rag` with the preprocessor:
|
| 135 |
+
|
| 136 |
+
```bash
|
| 137 |
+
python rag_preprocess.py \
|
| 138 |
+
--input_path ./datasets/LooGLE-v2 \
|
| 139 |
+
--split test \
|
| 140 |
+
--output_path ./datasets/LooGLE-v2/test_rag.jsonl \
|
| 141 |
+
--embedding_model THUDM/LongCite-glm4-9b \
|
| 142 |
+
--devices 0,1
|
| 143 |
+
```
|
| 144 |
+
|
| 145 |
+
For multi-turn refinement (using a generator model to iteratively improve retrieval queries):
|
| 146 |
+
|
| 147 |
+
```bash
|
| 148 |
+
python rag_preprocess.py \
|
| 149 |
+
--input_path ./datasets/LooGLE-v2 \
|
| 150 |
+
--split test \
|
| 151 |
+
--output_path ./datasets/LooGLE-v2/test_rag_multi.jsonl \
|
| 152 |
+
--embedding_model THUDM/LongCite-glm4-9b \
|
| 153 |
+
--generator_model meta-llama/Llama-3.1-8B \
|
| 154 |
+
--multi_turn --devices 0,1
|
| 155 |
+
```
|
| 156 |
+
|
| 157 |
+
### π― Running Predictions
|
| 158 |
+
|
| 159 |
+
#### Option A: vLLM server (`predict.py`)
|
| 160 |
+
|
| 161 |
+
```bash
|
| 162 |
+
python predict.py \
|
| 163 |
+
--model your-model-name \
|
| 164 |
+
--data_dir ./datasets/LooGLE-v2 \
|
| 165 |
+
--save_dir ./results \
|
| 166 |
+
--max_new_tokens 512
|
| 167 |
+
```
|
| 168 |
+
|
| 169 |
+
#### Option B: Transformers local (`predict_transformers.py`)
|
| 170 |
+
|
| 171 |
+
```bash
|
| 172 |
+
python predict_transformers.py \
|
| 173 |
+
--model your-model-name \
|
| 174 |
+
--data_dir ./datasets/LooGLE-v2 \
|
| 175 |
+
--save_dir ./results \
|
| 176 |
+
--max_new_tokens 512
|
| 177 |
+
```
|
| 178 |
+
|
| 179 |
+
Optional prompting flags (both scripts):
|
| 180 |
+
- `--use_cot` for Chain-of-Thought
|
| 181 |
+
- `--use_rag --rag_topk <k> --rag_context <path>` to inject precomputed `context_rag` (default file: `./datasets/LooGLE-v2/test_rag.jsonl`)
|
| 182 |
+
|
| 183 |
+
<details>
|
| 184 |
+
<summary><b>π Core parameters (both options)</b></summary>
|
| 185 |
+
|
| 186 |
+
| Flag | Purpose |
|
| 187 |
+
|------|---------|
|
| 188 |
+
| `--model` | Must match `config/models.jsonl` name |
|
| 189 |
+
| `--data_dir` | Dataset path (jsonl or HF) |
|
| 190 |
+
| `--save_dir` | Output directory |
|
| 191 |
+
| `--with_context` | 1/0 to include original context |
|
| 192 |
+
| `--n_proc` | Parallel processes |
|
| 193 |
+
| `--max_new_tokens` | Generation length |
|
| 194 |
+
| `--use_cot` | Enable Chain-of-Thought |
|
| 195 |
+
| `--use_rag` | Use retrieved context |
|
| 196 |
+
| `--rag_topk` | How many retrieved chunks to keep |
|
| 197 |
+
| `--rag_context` | Path to `id + context_rag` jsonl |
|
| 198 |
+
|
| 199 |
+
</details>
|
| 200 |
+
|
| 201 |
+
<details>
|
| 202 |
+
<summary><b>π₯οΈ Transformers-only flags</b></summary>
|
| 203 |
+
|
| 204 |
+
| Flag | Purpose |
|
| 205 |
+
|------|---------|
|
| 206 |
+
| `--device` | Target device (cuda/cpu, auto by default) |
|
| 207 |
+
| `--load_in_8bit` | 8-bit quantization (needs bitsandbytes) |
|
| 208 |
+
| `--load_in_4bit` | 4-bit quantization (needs bitsandbytes) |
|
| 209 |
+
| `--torch_dtype` | Weight dtype: float16/bfloat16/float32 |
|
| 210 |
+
|
| 211 |
+
> π‘ Install `bitsandbytes` to enable quantization: `pip install bitsandbytes`
|
| 212 |
+
|
| 213 |
+
</details>
|
| 214 |
+
|
| 215 |
+
### π Evaluation
|
| 216 |
+
|
| 217 |
+
After prediction, evaluate the results:
|
| 218 |
+
|
| 219 |
+
```bash
|
| 220 |
+
python evaluate.py --input_path ./results/your-model-name.jsonl
|
| 221 |
+
```
|
| 222 |
+
|
| 223 |
+
This outputs per-task accuracy for each domain and overall accuracy.
|
| 224 |
+
|
| 225 |
+
For batch evaluation (e.g., multiple runs with CoT/RAG or no-context variants):
|
| 226 |
+
|
| 227 |
+
```bash
|
| 228 |
+
python evaluate.py --input_path ./results --batch --output_json ./results/summary.json
|
| 229 |
+
```
|
| 230 |
+
|
| 231 |
+
This scans a folder for `.jsonl` files, reports each fileβs accuracy, and optionally saves a summary.
|
| 232 |
+
|
| 233 |
+
---
|
| 234 |
+
|
| 235 |
+
## π Project Structure
|
| 236 |
+
|
| 237 |
+
```
|
| 238 |
+
LooGLE-v2/
|
| 239 |
+
βββ src/
|
| 240 |
+
β βββ answer_extractor.py # Answer extraction logic
|
| 241 |
+
β βββ evaluator.py # Evaluation metrics
|
| 242 |
+
β βββ llm_client.py # LLM client implementations
|
| 243 |
+
β βββ data_loader.py # Data loading utilities
|
| 244 |
+
β βββ utils.py # Common utilities
|
| 245 |
+
βββ config/
|
| 246 |
+
β βββ models.jsonl # Model configurations
|
| 247 |
+
βββ predict.py # Prediction script (vLLM server)
|
| 248 |
+
βββ predict_transformers.py # Prediction script (direct transformers)
|
| 249 |
+
βββ rag_preprocess.py # RAG context preprocessing
|
| 250 |
+
βββ evaluate.py # Evaluation script
|
| 251 |
+
βββ requirements.txt # Dependencies
|
| 252 |
+
```
|
| 253 |
+
|
| 254 |
+
---
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
## π Results Format
|
| 258 |
+
|
| 259 |
+
Prediction outputs are saved in JSONL format:
|
| 260 |
+
|
| 261 |
+
```json
|
| 262 |
+
{
|
| 263 |
+
"id": "sample_id",
|
| 264 |
+
"source": "Finance",
|
| 265 |
+
"task": "Metric Calculation",
|
| 266 |
+
"type": "question_type",
|
| 267 |
+
"correct_answer": "123.45",
|
| 268 |
+
"pred_answer": "123.40",
|
| 269 |
+
"response": "The correct answer is 123.40",
|
| 270 |
+
"judge": true
|
| 271 |
+
}
|
| 272 |
+
```
|
| 273 |
+
|
| 274 |
+
---
|
| 275 |
+
|
| 276 |
+
## π Citation
|
| 277 |
+
|
| 278 |
+
If you use LooGLE v2 in your research, please cite:
|
| 279 |
+
|
| 280 |
+
```bibtex
|
| 281 |
+
@article{he2025loogle,
|
| 282 |
+
title={LooGLE v2: Are LLMs Ready for Real World Long Dependency Challenges?},
|
| 283 |
+
author={He, Ziyuan and Wang, Yuxuan and Li, Jiaqi and Liang, Kexin and Zhang, Muhan},
|
| 284 |
+
journal={arXiv preprint arXiv:2510.22548},
|
| 285 |
+
year={2025}
|
| 286 |
+
}
|
| 287 |
+
```
|
| 288 |
+
|
| 289 |
+
---
|
| 290 |
+
|
| 291 |
+
## π License
|
| 292 |
+
|
| 293 |
+
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
|
| 294 |
+
|
| 295 |
+
---
|