Commit
·
c8f983f
0
Parent(s):
Duplicate from unsloth/jobs
Browse filesCo-authored-by: Daniel van Strien <[email protected]>
- .gitattributes +59 -0
- README.md +172 -0
- continued-pretraining.py +411 -0
- sft-gemma3-vlm.py +377 -0
- sft-lfm2.5.py +539 -0
- sft-qwen3-vl.py +596 -0
.gitattributes
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.lz4 filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.mds filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
# Audio files - uncompressed
|
| 39 |
+
*.pcm filter=lfs diff=lfs merge=lfs -text
|
| 40 |
+
*.sam filter=lfs diff=lfs merge=lfs -text
|
| 41 |
+
*.raw filter=lfs diff=lfs merge=lfs -text
|
| 42 |
+
# Audio files - compressed
|
| 43 |
+
*.aac filter=lfs diff=lfs merge=lfs -text
|
| 44 |
+
*.flac filter=lfs diff=lfs merge=lfs -text
|
| 45 |
+
*.mp3 filter=lfs diff=lfs merge=lfs -text
|
| 46 |
+
*.ogg filter=lfs diff=lfs merge=lfs -text
|
| 47 |
+
*.wav filter=lfs diff=lfs merge=lfs -text
|
| 48 |
+
# Image files - uncompressed
|
| 49 |
+
*.bmp filter=lfs diff=lfs merge=lfs -text
|
| 50 |
+
*.gif filter=lfs diff=lfs merge=lfs -text
|
| 51 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
| 52 |
+
*.tiff filter=lfs diff=lfs merge=lfs -text
|
| 53 |
+
# Image files - compressed
|
| 54 |
+
*.jpg filter=lfs diff=lfs merge=lfs -text
|
| 55 |
+
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
| 56 |
+
*.webp filter=lfs diff=lfs merge=lfs -text
|
| 57 |
+
# Video files - compressed
|
| 58 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
| 59 |
+
*.webm filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
viewer: false
|
| 3 |
+
tags:
|
| 4 |
+
- uv-script
|
| 5 |
+
- unsloth
|
| 6 |
+
- training
|
| 7 |
+
- hf-jobs
|
| 8 |
+
- vlm
|
| 9 |
+
- fine-tuning
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
# 🦥 Unsloth Training Scripts for HF Jobs
|
| 13 |
+
|
| 14 |
+
UV scripts for fine-tuning LLMs and VLMs using [Unsloth](https://github.com/unslothai/unsloth) on [HF Jobs](https://huggingface.co/docs/hub/jobs) (on-demand cloud GPUs). UV handles dependency installation automatically, so you can run these scripts directly without any local setup.
|
| 15 |
+
|
| 16 |
+
These scripts can also be used or adapted by agents to train models for you.
|
| 17 |
+
|
| 18 |
+
## Prerequisites
|
| 19 |
+
|
| 20 |
+
- A Hugging Face account
|
| 21 |
+
- The [HF CLI](https://huggingface.co/docs/huggingface_hub/main/en/guides/cli) installed and authenticated (`hf auth login`)
|
| 22 |
+
- A dataset on the Hub in the appropriate format (see format requirements below). A strong LLM agent can often convert your data into the right format if needed.
|
| 23 |
+
|
| 24 |
+
## Data Formats
|
| 25 |
+
|
| 26 |
+
### LLM Fine-tuning (SFT)
|
| 27 |
+
|
| 28 |
+
Requires conversation data in ShareGPT or similar format:
|
| 29 |
+
|
| 30 |
+
```python
|
| 31 |
+
{
|
| 32 |
+
"messages": [
|
| 33 |
+
{"from": "human", "value": "What is the capital of France?"},
|
| 34 |
+
{"from": "gpt", "value": "The capital of France is Paris."}
|
| 35 |
+
]
|
| 36 |
+
}
|
| 37 |
+
```
|
| 38 |
+
|
| 39 |
+
The script auto-converts common formats (ShareGPT, Alpaca, etc.) via `standardize_data_formats`. See [mlabonne/FineTome-100k](https://huggingface.co/datasets/mlabonne/FineTome-100k) for a working dataset example.
|
| 40 |
+
|
| 41 |
+
### VLM Fine-tuning
|
| 42 |
+
|
| 43 |
+
Requires `images` and `messages` columns:
|
| 44 |
+
|
| 45 |
+
```python
|
| 46 |
+
{
|
| 47 |
+
"images": [<PIL.Image>], # List of images
|
| 48 |
+
"messages": [
|
| 49 |
+
{
|
| 50 |
+
"role": "user",
|
| 51 |
+
"content": [
|
| 52 |
+
{"type": "image"},
|
| 53 |
+
{"type": "text", "text": "What's in this image?"}
|
| 54 |
+
]
|
| 55 |
+
},
|
| 56 |
+
{
|
| 57 |
+
"role": "assistant",
|
| 58 |
+
"content": [
|
| 59 |
+
{"type": "text", "text": "A golden retriever playing fetch in a park."}
|
| 60 |
+
]
|
| 61 |
+
}
|
| 62 |
+
]
|
| 63 |
+
}
|
| 64 |
+
```
|
| 65 |
+
|
| 66 |
+
See [davanstrien/iconclass-vlm-sft](https://huggingface.co/datasets/davanstrien/iconclass-vlm-sft) for a working dataset example, and [davanstrien/iconclass-vlm-qwen3-best](https://huggingface.co/davanstrien/iconclass-vlm-qwen3-best) for a model trained with these scripts.
|
| 67 |
+
|
| 68 |
+
### Continued Pretraining
|
| 69 |
+
|
| 70 |
+
Any dataset with a text column:
|
| 71 |
+
|
| 72 |
+
```python
|
| 73 |
+
{"text": "Your domain-specific text here..."}
|
| 74 |
+
```
|
| 75 |
+
|
| 76 |
+
Use `--text-column` if your column has a different name.
|
| 77 |
+
|
| 78 |
+
## Usage
|
| 79 |
+
|
| 80 |
+
View available options for any script:
|
| 81 |
+
|
| 82 |
+
```bash
|
| 83 |
+
uv run https://huggingface.co/datasets/unsloth/jobs/raw/main/sft-lfm2.5.py --help
|
| 84 |
+
```
|
| 85 |
+
|
| 86 |
+
### LLM fine-tuning
|
| 87 |
+
|
| 88 |
+
Fine-tune [LFM2.5-1.2B-Instruct](https://huggingface.co/LiquidAI/LFM2.5-1.2B-Instruct), a compact and efficient text model from Liquid AI:
|
| 89 |
+
|
| 90 |
+
```bash
|
| 91 |
+
hf jobs uv run \
|
| 92 |
+
https://huggingface.co/datasets/unsloth/jobs/raw/main/sft-lfm2.5.py \
|
| 93 |
+
--flavor a10g-small --secrets HF_TOKEN --timeout 4h \
|
| 94 |
+
-- --dataset mlabonne/FineTome-100k \
|
| 95 |
+
--num-epochs 1 \
|
| 96 |
+
--eval-split 0.2 \
|
| 97 |
+
--output-repo your-username/lfm-finetuned
|
| 98 |
+
```
|
| 99 |
+
|
| 100 |
+
### VLM fine-tuning
|
| 101 |
+
|
| 102 |
+
```bash
|
| 103 |
+
hf jobs uv run \
|
| 104 |
+
https://huggingface.co/datasets/unsloth/jobs/raw/main/sft-qwen3-vl.py \
|
| 105 |
+
--flavor a100-large --secrets HF_TOKEN \
|
| 106 |
+
-- --dataset your-username/dataset \
|
| 107 |
+
--trackio-space your-username/trackio \
|
| 108 |
+
--output-repo your-username/my-model
|
| 109 |
+
```
|
| 110 |
+
|
| 111 |
+
### Continued pretraining
|
| 112 |
+
|
| 113 |
+
```bash
|
| 114 |
+
hf jobs uv run \
|
| 115 |
+
https://huggingface.co/datasets/unsloth/jobs/raw/main/continued-pretraining.py \
|
| 116 |
+
--flavor a100-large --secrets HF_TOKEN \
|
| 117 |
+
-- --dataset your-username/domain-corpus \
|
| 118 |
+
--text-column content \
|
| 119 |
+
--max-steps 1000 \
|
| 120 |
+
--output-repo your-username/domain-llm
|
| 121 |
+
```
|
| 122 |
+
|
| 123 |
+
### With Trackio monitoring
|
| 124 |
+
|
| 125 |
+
```bash
|
| 126 |
+
hf jobs uv run \
|
| 127 |
+
https://huggingface.co/datasets/unsloth/jobs/raw/main/sft-lfm2.5.py \
|
| 128 |
+
--flavor a10g-small --secrets HF_TOKEN \
|
| 129 |
+
-- --dataset mlabonne/FineTome-100k \
|
| 130 |
+
--trackio-space your-username/trackio \
|
| 131 |
+
--output-repo your-username/lfm-finetuned
|
| 132 |
+
```
|
| 133 |
+
|
| 134 |
+
## Scripts
|
| 135 |
+
|
| 136 |
+
| Script | Base Model | Task |
|
| 137 |
+
| ------------------------------------------------------ | -------------------- | ----------------------------- |
|
| 138 |
+
| [`sft-lfm2.5.py`](sft-lfm2.5.py) | LFM2.5-1.2B-Instruct | LLM fine-tuning (recommended) |
|
| 139 |
+
| [`sft-qwen3-vl.py`](sft-qwen3-vl.py) | Qwen3-VL-8B | VLM fine-tuning |
|
| 140 |
+
| [`sft-gemma3-vlm.py`](sft-gemma3-vlm.py) | Gemma 3 4B | VLM fine-tuning (smaller) |
|
| 141 |
+
| [`continued-pretraining.py`](continued-pretraining.py) | Qwen3-0.6B | Domain adaptation |
|
| 142 |
+
|
| 143 |
+
## Common Options
|
| 144 |
+
|
| 145 |
+
| Option | Description | Default |
|
| 146 |
+
| ------------------------- | -------------------------------------- | ------------ |
|
| 147 |
+
| `--dataset` | HF dataset ID | _required_ |
|
| 148 |
+
| `--output-repo` | Where to save trained model | _required_ |
|
| 149 |
+
| `--max-steps` | Number of training steps | 500 |
|
| 150 |
+
| `--num-epochs` | Train for N epochs instead of steps | - |
|
| 151 |
+
| `--eval-split` | Fraction for evaluation (e.g., 0.2) | 0 (disabled) |
|
| 152 |
+
| `--batch-size` | Per-device batch size | 2 |
|
| 153 |
+
| `--gradient-accumulation` | Gradient accumulation steps | 4 |
|
| 154 |
+
| `--lora-r` | LoRA rank | 16 |
|
| 155 |
+
| `--learning-rate` | Learning rate | 2e-4 |
|
| 156 |
+
| `--merge-model` | Upload merged model (not just adapter) | false |
|
| 157 |
+
| `--trackio-space` | HF Space for live monitoring | - |
|
| 158 |
+
| `--run-name` | Custom name for Trackio run | auto |
|
| 159 |
+
|
| 160 |
+
## Tips
|
| 161 |
+
|
| 162 |
+
- Use `--max-steps 10` to verify everything works before a full run
|
| 163 |
+
- `--eval-split 0.1` helps detect overfitting
|
| 164 |
+
- Run `hf jobs hardware` to see GPU pricing (A100-large ~$2.50/hr, L40S ~$1.80/hr)
|
| 165 |
+
- Add `--streaming` for very large datasets
|
| 166 |
+
- First training step may take a few minutes (CUDA kernel compilation)
|
| 167 |
+
|
| 168 |
+
## Links
|
| 169 |
+
|
| 170 |
+
- [HF Jobs Quickstart](https://huggingface.co/docs/hub/jobs-quickstart)
|
| 171 |
+
- [Unsloth Documentation](https://docs.unsloth.ai/)
|
| 172 |
+
- [UV Scripts Guide](https://docs.astral.sh/uv/guides/scripts/)
|
continued-pretraining.py
ADDED
|
@@ -0,0 +1,411 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# /// script
|
| 2 |
+
# requires-python = ">=3.10"
|
| 3 |
+
# dependencies = [
|
| 4 |
+
# "unsloth",
|
| 5 |
+
# "datasets",
|
| 6 |
+
# "trl",
|
| 7 |
+
# "huggingface_hub[hf_transfer]",
|
| 8 |
+
# "trackio",
|
| 9 |
+
# ]
|
| 10 |
+
# ///
|
| 11 |
+
"""
|
| 12 |
+
Continued pretraining of language models using streaming datasets.
|
| 13 |
+
|
| 14 |
+
Demonstrates domain adaptation with streaming - no disk space needed.
|
| 15 |
+
Uses FineWeb-2's Latin subset as default example (1.47M texts, ~1.7GB).
|
| 16 |
+
|
| 17 |
+
Run locally (if you have a GPU):
|
| 18 |
+
uv run continued-pretraining.py --output-repo your-username/qwen-latin
|
| 19 |
+
|
| 20 |
+
Run on HF Jobs:
|
| 21 |
+
hf jobs uv run \
|
| 22 |
+
https://huggingface.co/datasets/unsloth/jobs/raw/main/continued-pretraining.py \
|
| 23 |
+
--flavor a100-large --secrets HF_TOKEN \
|
| 24 |
+
-- --max-steps 1000 --output-repo your-username/qwen-latin
|
| 25 |
+
|
| 26 |
+
With custom dataset:
|
| 27 |
+
uv run continued-pretraining.py \
|
| 28 |
+
--dataset your-username/domain-texts \
|
| 29 |
+
--text-column content \
|
| 30 |
+
--max-steps 1000 \
|
| 31 |
+
--output-repo your-username/domain-llm
|
| 32 |
+
"""
|
| 33 |
+
|
| 34 |
+
import argparse
|
| 35 |
+
import logging
|
| 36 |
+
import os
|
| 37 |
+
import sys
|
| 38 |
+
import time
|
| 39 |
+
|
| 40 |
+
# Force unbuffered output for HF Jobs logs
|
| 41 |
+
sys.stdout.reconfigure(line_buffering=True)
|
| 42 |
+
sys.stderr.reconfigure(line_buffering=True)
|
| 43 |
+
|
| 44 |
+
logging.basicConfig(
|
| 45 |
+
level=logging.INFO,
|
| 46 |
+
format="%(asctime)s - %(levelname)s - %(message)s",
|
| 47 |
+
)
|
| 48 |
+
logger = logging.getLogger(__name__)
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def check_cuda():
|
| 52 |
+
"""Check CUDA availability and exit if not available."""
|
| 53 |
+
import torch
|
| 54 |
+
|
| 55 |
+
if not torch.cuda.is_available():
|
| 56 |
+
logger.error("CUDA is not available. This script requires a GPU.")
|
| 57 |
+
logger.error("Run on a machine with a CUDA-capable GPU or use HF Jobs:")
|
| 58 |
+
logger.error(
|
| 59 |
+
" hf jobs uv run https://huggingface.co/datasets/unsloth/jobs/raw/main/continued-pretraining.py --flavor a100-large ..."
|
| 60 |
+
)
|
| 61 |
+
sys.exit(1)
|
| 62 |
+
logger.info(f"CUDA available: {torch.cuda.get_device_name(0)}")
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def parse_args():
|
| 66 |
+
parser = argparse.ArgumentParser(
|
| 67 |
+
description="Continued pretraining of LLMs using streaming datasets",
|
| 68 |
+
formatter_class=argparse.RawDescriptionHelpFormatter,
|
| 69 |
+
epilog="""
|
| 70 |
+
Examples:
|
| 71 |
+
# Train on Latin (default)
|
| 72 |
+
uv run continued-pretraining.py \\
|
| 73 |
+
--max-steps 500 \\
|
| 74 |
+
--output-repo username/qwen-latin
|
| 75 |
+
|
| 76 |
+
# Custom dataset
|
| 77 |
+
uv run continued-pretraining.py \\
|
| 78 |
+
--dataset your-username/domain-texts \\
|
| 79 |
+
--text-column content \\
|
| 80 |
+
--max-steps 1000 \\
|
| 81 |
+
--output-repo username/domain-llm
|
| 82 |
+
|
| 83 |
+
# HF Jobs with monitoring
|
| 84 |
+
hf jobs uv run \\
|
| 85 |
+
https://huggingface.co/datasets/unsloth/jobs/raw/main/continued-pretraining.py \\
|
| 86 |
+
--flavor a100-large --secrets HF_TOKEN \\
|
| 87 |
+
-- --max-steps 1000 --trackio-space username/trackio --output-repo username/qwen-latin
|
| 88 |
+
""",
|
| 89 |
+
)
|
| 90 |
+
parser.add_argument(
|
| 91 |
+
"--base-model",
|
| 92 |
+
default="unsloth/Qwen3-0.6B-Base-unsloth-bnb-4bit",
|
| 93 |
+
help="Base model to fine-tune (default: unsloth/Qwen3-0.6B-Base-unsloth-bnb-4bit)",
|
| 94 |
+
)
|
| 95 |
+
parser.add_argument(
|
| 96 |
+
"--dataset",
|
| 97 |
+
default="HuggingFaceFW/fineweb-2",
|
| 98 |
+
help="Dataset for continued pretraining (default: HuggingFaceFW/fineweb-2)",
|
| 99 |
+
)
|
| 100 |
+
parser.add_argument(
|
| 101 |
+
"--dataset-config",
|
| 102 |
+
default="lat_Latn",
|
| 103 |
+
help="Dataset config/subset name (default: lat_Latn for Latin)",
|
| 104 |
+
)
|
| 105 |
+
parser.add_argument(
|
| 106 |
+
"--text-column",
|
| 107 |
+
default="text",
|
| 108 |
+
help="Column containing text data (default: text)",
|
| 109 |
+
)
|
| 110 |
+
parser.add_argument(
|
| 111 |
+
"--output-repo",
|
| 112 |
+
required=True,
|
| 113 |
+
help="HF Hub repo to push model to (e.g., 'username/qwen-latin')",
|
| 114 |
+
)
|
| 115 |
+
parser.add_argument(
|
| 116 |
+
"--max-steps",
|
| 117 |
+
type=int,
|
| 118 |
+
default=500,
|
| 119 |
+
help="Number of training steps (default: 500)",
|
| 120 |
+
)
|
| 121 |
+
parser.add_argument(
|
| 122 |
+
"--batch-size",
|
| 123 |
+
type=int,
|
| 124 |
+
default=4,
|
| 125 |
+
help="Per-device batch size (default: 4)",
|
| 126 |
+
)
|
| 127 |
+
parser.add_argument(
|
| 128 |
+
"--gradient-accumulation",
|
| 129 |
+
type=int,
|
| 130 |
+
default=4,
|
| 131 |
+
help="Gradient accumulation steps (default: 4)",
|
| 132 |
+
)
|
| 133 |
+
parser.add_argument(
|
| 134 |
+
"--learning-rate",
|
| 135 |
+
type=float,
|
| 136 |
+
default=2e-4,
|
| 137 |
+
help="Learning rate (default: 2e-4)",
|
| 138 |
+
)
|
| 139 |
+
parser.add_argument(
|
| 140 |
+
"--max-seq-length",
|
| 141 |
+
type=int,
|
| 142 |
+
default=2048,
|
| 143 |
+
help="Maximum sequence length (default: 2048)",
|
| 144 |
+
)
|
| 145 |
+
parser.add_argument(
|
| 146 |
+
"--lora-r",
|
| 147 |
+
type=int,
|
| 148 |
+
default=16,
|
| 149 |
+
help="LoRA rank (default: 16)",
|
| 150 |
+
)
|
| 151 |
+
parser.add_argument(
|
| 152 |
+
"--save-local",
|
| 153 |
+
default="pretraining-output",
|
| 154 |
+
help="Local directory to save model (default: pretraining-output)",
|
| 155 |
+
)
|
| 156 |
+
parser.add_argument(
|
| 157 |
+
"--trackio-space",
|
| 158 |
+
default=None,
|
| 159 |
+
help="HF Space for Trackio dashboard (e.g., 'username/trackio')",
|
| 160 |
+
)
|
| 161 |
+
return parser.parse_args()
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
def main():
|
| 165 |
+
args = parse_args()
|
| 166 |
+
|
| 167 |
+
print("=" * 70)
|
| 168 |
+
print("Continued Pretraining with Streaming Datasets")
|
| 169 |
+
print("=" * 70)
|
| 170 |
+
print(f"\nConfiguration:")
|
| 171 |
+
print(f" Base model: {args.base_model}")
|
| 172 |
+
print(f" Dataset: {args.dataset} ({args.dataset_config})")
|
| 173 |
+
print(f" Text column: {args.text_column}")
|
| 174 |
+
print(f" Max steps: {args.max_steps}")
|
| 175 |
+
print(
|
| 176 |
+
f" Batch size: {args.batch_size} x {args.gradient_accumulation} = {args.batch_size * args.gradient_accumulation}"
|
| 177 |
+
)
|
| 178 |
+
print(f" Learning rate: {args.learning_rate}")
|
| 179 |
+
print(f" LoRA rank: {args.lora_r}")
|
| 180 |
+
print(f" Output repo: {args.output_repo}")
|
| 181 |
+
print(f" Trackio space: {args.trackio_space or '(not configured)'}")
|
| 182 |
+
print()
|
| 183 |
+
|
| 184 |
+
# Check CUDA before heavy imports
|
| 185 |
+
check_cuda()
|
| 186 |
+
|
| 187 |
+
# Enable fast transfers
|
| 188 |
+
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
| 189 |
+
|
| 190 |
+
# Set Trackio space if provided
|
| 191 |
+
if args.trackio_space:
|
| 192 |
+
os.environ["TRACKIO_SPACE_ID"] = args.trackio_space
|
| 193 |
+
logger.info(
|
| 194 |
+
f"Trackio dashboard: https://huggingface.co/spaces/{args.trackio_space}"
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
# Import heavy dependencies
|
| 198 |
+
from unsloth import FastLanguageModel
|
| 199 |
+
from datasets import load_dataset
|
| 200 |
+
from trl import SFTTrainer, SFTConfig
|
| 201 |
+
from huggingface_hub import login
|
| 202 |
+
|
| 203 |
+
# Login to Hub
|
| 204 |
+
token = os.environ.get("HF_TOKEN")
|
| 205 |
+
if token:
|
| 206 |
+
login(token=token)
|
| 207 |
+
logger.info("Logged in to Hugging Face Hub")
|
| 208 |
+
else:
|
| 209 |
+
logger.warning("HF_TOKEN not set - model upload may fail")
|
| 210 |
+
|
| 211 |
+
# 1. Load model
|
| 212 |
+
print("\n[1/5] Loading model...")
|
| 213 |
+
start = time.time()
|
| 214 |
+
|
| 215 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
| 216 |
+
args.base_model,
|
| 217 |
+
max_seq_length=args.max_seq_length,
|
| 218 |
+
load_in_4bit=True,
|
| 219 |
+
)
|
| 220 |
+
|
| 221 |
+
model = FastLanguageModel.get_peft_model(
|
| 222 |
+
model,
|
| 223 |
+
r=args.lora_r,
|
| 224 |
+
lora_alpha=args.lora_r * 2,
|
| 225 |
+
lora_dropout=0,
|
| 226 |
+
target_modules=[
|
| 227 |
+
"q_proj",
|
| 228 |
+
"k_proj",
|
| 229 |
+
"v_proj",
|
| 230 |
+
"o_proj",
|
| 231 |
+
"gate_proj",
|
| 232 |
+
"up_proj",
|
| 233 |
+
"down_proj",
|
| 234 |
+
],
|
| 235 |
+
bias="none",
|
| 236 |
+
use_gradient_checkpointing="unsloth",
|
| 237 |
+
random_state=3407,
|
| 238 |
+
)
|
| 239 |
+
print(f"Model loaded in {time.time() - start:.1f}s")
|
| 240 |
+
|
| 241 |
+
# 2. Load streaming dataset
|
| 242 |
+
print(f"\n[2/5] Loading streaming dataset ({args.dataset})...")
|
| 243 |
+
start = time.time()
|
| 244 |
+
|
| 245 |
+
# Handle dataset with or without config
|
| 246 |
+
if args.dataset_config:
|
| 247 |
+
dataset = load_dataset(
|
| 248 |
+
args.dataset,
|
| 249 |
+
name=args.dataset_config,
|
| 250 |
+
split="train",
|
| 251 |
+
streaming=True,
|
| 252 |
+
)
|
| 253 |
+
else:
|
| 254 |
+
dataset = load_dataset(
|
| 255 |
+
args.dataset,
|
| 256 |
+
split="train",
|
| 257 |
+
streaming=True,
|
| 258 |
+
)
|
| 259 |
+
|
| 260 |
+
# Peek at the data
|
| 261 |
+
sample = next(iter(dataset))
|
| 262 |
+
text_preview = (
|
| 263 |
+
sample[args.text_column][:100]
|
| 264 |
+
if args.text_column in sample
|
| 265 |
+
else "(column not found)"
|
| 266 |
+
)
|
| 267 |
+
print(f"Dataset ready in {time.time() - start:.1f}s")
|
| 268 |
+
print(f" Sample: {text_preview}...")
|
| 269 |
+
|
| 270 |
+
# Reload dataset (consumed one sample above)
|
| 271 |
+
if args.dataset_config:
|
| 272 |
+
dataset = load_dataset(
|
| 273 |
+
args.dataset,
|
| 274 |
+
name=args.dataset_config,
|
| 275 |
+
split="train",
|
| 276 |
+
streaming=True,
|
| 277 |
+
)
|
| 278 |
+
else:
|
| 279 |
+
dataset = load_dataset(
|
| 280 |
+
args.dataset,
|
| 281 |
+
split="train",
|
| 282 |
+
streaming=True,
|
| 283 |
+
)
|
| 284 |
+
|
| 285 |
+
# 3. Format dataset
|
| 286 |
+
print("\n[3/5] Preparing dataset...")
|
| 287 |
+
|
| 288 |
+
text_column = args.text_column
|
| 289 |
+
|
| 290 |
+
def format_text(example):
|
| 291 |
+
return {"text": example[text_column] + tokenizer.eos_token}
|
| 292 |
+
|
| 293 |
+
formatted_dataset = dataset.map(format_text)
|
| 294 |
+
|
| 295 |
+
# 4. Train
|
| 296 |
+
print(f"\n[4/5] Training for {args.max_steps} steps...")
|
| 297 |
+
start = time.time()
|
| 298 |
+
|
| 299 |
+
trainer = SFTTrainer(
|
| 300 |
+
model=model,
|
| 301 |
+
tokenizer=tokenizer,
|
| 302 |
+
train_dataset=formatted_dataset,
|
| 303 |
+
args=SFTConfig(
|
| 304 |
+
per_device_train_batch_size=args.batch_size,
|
| 305 |
+
gradient_accumulation_steps=args.gradient_accumulation,
|
| 306 |
+
warmup_steps=min(10, args.max_steps // 10),
|
| 307 |
+
max_steps=args.max_steps,
|
| 308 |
+
learning_rate=args.learning_rate,
|
| 309 |
+
logging_steps=max(1, args.max_steps // 20),
|
| 310 |
+
optim="adamw_8bit",
|
| 311 |
+
weight_decay=0.01,
|
| 312 |
+
lr_scheduler_type="linear",
|
| 313 |
+
seed=3407,
|
| 314 |
+
output_dir=args.save_local,
|
| 315 |
+
report_to="trackio",
|
| 316 |
+
run_name=f"pretraining-{args.max_steps}steps",
|
| 317 |
+
dataset_text_field="text",
|
| 318 |
+
max_seq_length=args.max_seq_length,
|
| 319 |
+
packing=False,
|
| 320 |
+
),
|
| 321 |
+
)
|
| 322 |
+
|
| 323 |
+
trainer.train()
|
| 324 |
+
train_time = time.time() - start
|
| 325 |
+
|
| 326 |
+
print(f"\nTraining completed in {train_time / 60:.1f} minutes")
|
| 327 |
+
print(f" Speed: {args.max_steps / train_time:.2f} steps/s")
|
| 328 |
+
|
| 329 |
+
# 5. Save and push
|
| 330 |
+
print("\n[5/5] Saving model...")
|
| 331 |
+
|
| 332 |
+
# Save locally
|
| 333 |
+
model.save_pretrained(args.save_local)
|
| 334 |
+
tokenizer.save_pretrained(args.save_local)
|
| 335 |
+
print(f"Saved locally to {args.save_local}/")
|
| 336 |
+
|
| 337 |
+
# Push to hub
|
| 338 |
+
print(f"\nPushing to {args.output_repo}...")
|
| 339 |
+
model.push_to_hub(args.output_repo, tokenizer=tokenizer)
|
| 340 |
+
print(f"Model available at: https://huggingface.co/{args.output_repo}")
|
| 341 |
+
|
| 342 |
+
# Update model card metadata with dataset info
|
| 343 |
+
from huggingface_hub import metadata_update
|
| 344 |
+
|
| 345 |
+
metadata_update(args.output_repo, {"datasets": [args.dataset]}, overwrite=True)
|
| 346 |
+
print(f" Model card updated with dataset: {args.dataset}")
|
| 347 |
+
|
| 348 |
+
# Quick inference test
|
| 349 |
+
print("\n" + "=" * 70)
|
| 350 |
+
print("Quick inference test:")
|
| 351 |
+
print("=" * 70)
|
| 352 |
+
|
| 353 |
+
FastLanguageModel.for_inference(model)
|
| 354 |
+
|
| 355 |
+
# Use a prompt appropriate to the dataset
|
| 356 |
+
if "lat_Latn" in (args.dataset_config or ""):
|
| 357 |
+
prompt = "Lingua Latina est"
|
| 358 |
+
else:
|
| 359 |
+
prompt = "The quick brown fox"
|
| 360 |
+
|
| 361 |
+
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
| 362 |
+
outputs = model.generate(
|
| 363 |
+
**inputs,
|
| 364 |
+
max_new_tokens=64,
|
| 365 |
+
temperature=0.7,
|
| 366 |
+
do_sample=True,
|
| 367 |
+
)
|
| 368 |
+
generated = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 369 |
+
|
| 370 |
+
print(f"\nPrompt: {prompt}")
|
| 371 |
+
print(f"Generated: {generated}")
|
| 372 |
+
|
| 373 |
+
print("\n" + "=" * 70)
|
| 374 |
+
print("Done!")
|
| 375 |
+
print("=" * 70)
|
| 376 |
+
|
| 377 |
+
|
| 378 |
+
if __name__ == "__main__":
|
| 379 |
+
# Show example usage if no arguments
|
| 380 |
+
if len(sys.argv) == 1:
|
| 381 |
+
print("=" * 70)
|
| 382 |
+
print("Continued Pretraining with Streaming Datasets")
|
| 383 |
+
print("=" * 70)
|
| 384 |
+
print("\nContinued pretraining for domain adaptation.")
|
| 385 |
+
print("Streams data directly from the Hub - no disk space needed.")
|
| 386 |
+
print("\nFeatures:")
|
| 387 |
+
print(" - ~60% less VRAM with Unsloth optimizations")
|
| 388 |
+
print(" - 2x faster training vs standard methods")
|
| 389 |
+
print(" - Trackio integration for monitoring")
|
| 390 |
+
print(" - Works with any text dataset")
|
| 391 |
+
print("\nDefault example (Latin):")
|
| 392 |
+
print("\n uv run continued-pretraining.py \\")
|
| 393 |
+
print(" --max-steps 500 \\")
|
| 394 |
+
print(" --output-repo your-username/qwen-latin")
|
| 395 |
+
print("\nHF Jobs example:")
|
| 396 |
+
print("\n hf jobs uv run \\")
|
| 397 |
+
print(
|
| 398 |
+
" https://huggingface.co/datasets/unsloth/jobs/raw/main/continued-pretraining.py \\"
|
| 399 |
+
)
|
| 400 |
+
print(" --flavor a100-large --secrets HF_TOKEN \\")
|
| 401 |
+
print(" -- --max-steps 1000 --output-repo your-username/qwen-latin")
|
| 402 |
+
print("\nCustom dataset:")
|
| 403 |
+
print("\n uv run continued-pretraining.py \\")
|
| 404 |
+
print(" --dataset your-username/domain-texts \\")
|
| 405 |
+
print(" --text-column content \\")
|
| 406 |
+
print(" --output-repo your-username/domain-llm")
|
| 407 |
+
print("\nFor full help: uv run continued-pretraining.py --help")
|
| 408 |
+
print("=" * 70)
|
| 409 |
+
sys.exit(0)
|
| 410 |
+
|
| 411 |
+
main()
|
sft-gemma3-vlm.py
ADDED
|
@@ -0,0 +1,377 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# /// script
|
| 2 |
+
# requires-python = ">=3.10"
|
| 3 |
+
# dependencies = [
|
| 4 |
+
# "unsloth",
|
| 5 |
+
# "datasets",
|
| 6 |
+
# "trl",
|
| 7 |
+
# "huggingface_hub[hf_transfer]",
|
| 8 |
+
# "trackio",
|
| 9 |
+
# "transformers==4.56.2",
|
| 10 |
+
# "trl==0.22.2",
|
| 11 |
+
# ]
|
| 12 |
+
# ///
|
| 13 |
+
"""
|
| 14 |
+
Fine-tune Gemma 3 4B Vision Language Model using Unsloth optimizations.
|
| 15 |
+
|
| 16 |
+
Streams data directly from the Hub - no disk space needed for massive VLM datasets.
|
| 17 |
+
Uses Unsloth for ~60% less VRAM and 2x faster training.
|
| 18 |
+
|
| 19 |
+
Run locally (if you have a GPU):
|
| 20 |
+
uv run sft-gemma3-vlm.py \
|
| 21 |
+
--max-steps 100 \
|
| 22 |
+
--output-repo your-username/vlm-test
|
| 23 |
+
|
| 24 |
+
Run on HF Jobs:
|
| 25 |
+
hf jobs uv run \
|
| 26 |
+
https://huggingface.co/datasets/unsloth/jobs/raw/main/sft-gemma3-vlm.py \
|
| 27 |
+
--flavor a100-large --secrets HF_TOKEN \
|
| 28 |
+
-- --max-steps 500 --output-repo your-username/vlm-finetuned
|
| 29 |
+
|
| 30 |
+
With Trackio dashboard:
|
| 31 |
+
uv run sft-gemma3-vlm.py \
|
| 32 |
+
--max-steps 500 \
|
| 33 |
+
--output-repo your-username/vlm-finetuned \
|
| 34 |
+
--trackio-space your-username/trackio
|
| 35 |
+
"""
|
| 36 |
+
|
| 37 |
+
import argparse
|
| 38 |
+
import logging
|
| 39 |
+
import os
|
| 40 |
+
import sys
|
| 41 |
+
import time
|
| 42 |
+
|
| 43 |
+
# Force unbuffered output for HF Jobs logs
|
| 44 |
+
sys.stdout.reconfigure(line_buffering=True)
|
| 45 |
+
sys.stderr.reconfigure(line_buffering=True)
|
| 46 |
+
|
| 47 |
+
logging.basicConfig(
|
| 48 |
+
level=logging.INFO,
|
| 49 |
+
format="%(asctime)s - %(levelname)s - %(message)s",
|
| 50 |
+
)
|
| 51 |
+
logger = logging.getLogger(__name__)
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def check_cuda():
|
| 55 |
+
"""Check CUDA availability and exit if not available."""
|
| 56 |
+
import torch
|
| 57 |
+
|
| 58 |
+
if not torch.cuda.is_available():
|
| 59 |
+
logger.error("CUDA is not available. This script requires a GPU.")
|
| 60 |
+
logger.error("Run on a machine with a CUDA-capable GPU or use HF Jobs:")
|
| 61 |
+
logger.error(
|
| 62 |
+
" hf jobs uv run https://huggingface.co/datasets/unsloth/jobs/raw/main/sft-gemma3-vlm.py --flavor a100-large ..."
|
| 63 |
+
)
|
| 64 |
+
sys.exit(1)
|
| 65 |
+
logger.info(f"CUDA available: {torch.cuda.get_device_name(0)}")
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def parse_args():
|
| 69 |
+
parser = argparse.ArgumentParser(
|
| 70 |
+
description="Fine-tune Gemma 3 4B VLM with streaming datasets using Unsloth",
|
| 71 |
+
formatter_class=argparse.RawDescriptionHelpFormatter,
|
| 72 |
+
epilog="""
|
| 73 |
+
Examples:
|
| 74 |
+
# Quick test run
|
| 75 |
+
uv run sft-gemma3-vlm.py \\
|
| 76 |
+
--max-steps 50 \\
|
| 77 |
+
--output-repo username/vlm-test
|
| 78 |
+
|
| 79 |
+
# Full training with Trackio monitoring
|
| 80 |
+
uv run sft-gemma3-vlm.py \\
|
| 81 |
+
--max-steps 500 \\
|
| 82 |
+
--output-repo username/vlm-finetuned \\
|
| 83 |
+
--trackio-space username/trackio
|
| 84 |
+
|
| 85 |
+
# Custom dataset
|
| 86 |
+
uv run sft-gemma3-vlm.py \\
|
| 87 |
+
--dataset your-username/your-vlm-dataset \\
|
| 88 |
+
--max-steps 1000 \\
|
| 89 |
+
--output-repo username/custom-vlm
|
| 90 |
+
""",
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
# Model and data
|
| 94 |
+
parser.add_argument(
|
| 95 |
+
"--base-model",
|
| 96 |
+
default="unsloth/gemma-3-4b-pt",
|
| 97 |
+
help="Base VLM model (default: unsloth/gemma-3-4b-pt)",
|
| 98 |
+
)
|
| 99 |
+
parser.add_argument(
|
| 100 |
+
"--dataset",
|
| 101 |
+
default="davanstrien/iconclass-vlm-sft",
|
| 102 |
+
help="Dataset with 'images' and 'messages' columns (default: davanstrien/iconclass-vlm-sft)",
|
| 103 |
+
)
|
| 104 |
+
parser.add_argument(
|
| 105 |
+
"--output-repo",
|
| 106 |
+
required=True,
|
| 107 |
+
help="HF Hub repo to push model to (e.g., 'username/vlm-finetuned')",
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
# Training config
|
| 111 |
+
parser.add_argument(
|
| 112 |
+
"--max-steps",
|
| 113 |
+
type=int,
|
| 114 |
+
default=500,
|
| 115 |
+
help="Training steps (default: 500). Required for streaming datasets.",
|
| 116 |
+
)
|
| 117 |
+
parser.add_argument(
|
| 118 |
+
"--batch-size",
|
| 119 |
+
type=int,
|
| 120 |
+
default=2,
|
| 121 |
+
help="Per-device batch size (default: 2)",
|
| 122 |
+
)
|
| 123 |
+
parser.add_argument(
|
| 124 |
+
"--gradient-accumulation",
|
| 125 |
+
type=int,
|
| 126 |
+
default=4,
|
| 127 |
+
help="Gradient accumulation steps (default: 4). Effective batch = batch-size * this",
|
| 128 |
+
)
|
| 129 |
+
parser.add_argument(
|
| 130 |
+
"--learning-rate",
|
| 131 |
+
type=float,
|
| 132 |
+
default=2e-4,
|
| 133 |
+
help="Learning rate (default: 2e-4)",
|
| 134 |
+
)
|
| 135 |
+
parser.add_argument(
|
| 136 |
+
"--max-seq-length",
|
| 137 |
+
type=int,
|
| 138 |
+
default=2048,
|
| 139 |
+
help="Maximum sequence length (default: 2048)",
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
# LoRA config
|
| 143 |
+
parser.add_argument(
|
| 144 |
+
"--lora-r",
|
| 145 |
+
type=int,
|
| 146 |
+
default=16,
|
| 147 |
+
help="LoRA rank (default: 16). Higher = more capacity but more VRAM",
|
| 148 |
+
)
|
| 149 |
+
parser.add_argument(
|
| 150 |
+
"--lora-alpha",
|
| 151 |
+
type=int,
|
| 152 |
+
default=32,
|
| 153 |
+
help="LoRA alpha (default: 32). Usually 2*r",
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
# Logging
|
| 157 |
+
parser.add_argument(
|
| 158 |
+
"--trackio-space",
|
| 159 |
+
default=None,
|
| 160 |
+
help="HF Space for Trackio dashboard (e.g., 'username/trackio')",
|
| 161 |
+
)
|
| 162 |
+
parser.add_argument(
|
| 163 |
+
"--save-local",
|
| 164 |
+
default="vlm-gemma3-output",
|
| 165 |
+
help="Local directory to save model (default: vlm-gemma3-output)",
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
return parser.parse_args()
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
def main():
|
| 172 |
+
args = parse_args()
|
| 173 |
+
|
| 174 |
+
print("=" * 70)
|
| 175 |
+
print("Gemma 3 4B VLM Streaming Fine-tuning with Unsloth")
|
| 176 |
+
print("=" * 70)
|
| 177 |
+
print("\nConfiguration:")
|
| 178 |
+
print(f" Base model: {args.base_model}")
|
| 179 |
+
print(f" Dataset: {args.dataset}")
|
| 180 |
+
print(f" Max steps: {args.max_steps}")
|
| 181 |
+
print(
|
| 182 |
+
f" Batch size: {args.batch_size} x {args.gradient_accumulation} = {args.batch_size * args.gradient_accumulation}"
|
| 183 |
+
)
|
| 184 |
+
print(f" Learning rate: {args.learning_rate}")
|
| 185 |
+
print(f" LoRA rank: {args.lora_r}")
|
| 186 |
+
print(f" Output repo: {args.output_repo}")
|
| 187 |
+
print(f" Trackio space: {args.trackio_space or '(not configured)'}")
|
| 188 |
+
print()
|
| 189 |
+
|
| 190 |
+
# Check CUDA before heavy imports
|
| 191 |
+
check_cuda()
|
| 192 |
+
|
| 193 |
+
# Enable fast transfers
|
| 194 |
+
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
| 195 |
+
|
| 196 |
+
# Set Trackio space if provided
|
| 197 |
+
if args.trackio_space:
|
| 198 |
+
os.environ["TRACKIO_SPACE_ID"] = args.trackio_space
|
| 199 |
+
logger.info(
|
| 200 |
+
f"Trackio dashboard: https://huggingface.co/spaces/{args.trackio_space}"
|
| 201 |
+
)
|
| 202 |
+
|
| 203 |
+
# Import heavy dependencies (note: import from unsloth.trainer for VLM)
|
| 204 |
+
from unsloth import FastVisionModel, get_chat_template
|
| 205 |
+
from unsloth.trainer import UnslothVisionDataCollator
|
| 206 |
+
from datasets import load_dataset
|
| 207 |
+
from trl import SFTTrainer, SFTConfig
|
| 208 |
+
from huggingface_hub import login
|
| 209 |
+
|
| 210 |
+
# Login to Hub
|
| 211 |
+
token = os.environ.get("HF_TOKEN")
|
| 212 |
+
if token:
|
| 213 |
+
login(token=token)
|
| 214 |
+
logger.info("Logged in to Hugging Face Hub")
|
| 215 |
+
else:
|
| 216 |
+
logger.warning("HF_TOKEN not set - model upload may fail")
|
| 217 |
+
|
| 218 |
+
# 1. Load model
|
| 219 |
+
print("\n[1/5] Loading model...")
|
| 220 |
+
start = time.time()
|
| 221 |
+
|
| 222 |
+
model, processor = FastVisionModel.from_pretrained(
|
| 223 |
+
args.base_model,
|
| 224 |
+
load_in_4bit=True,
|
| 225 |
+
use_gradient_checkpointing="unsloth",
|
| 226 |
+
)
|
| 227 |
+
|
| 228 |
+
model = FastVisionModel.get_peft_model(
|
| 229 |
+
model,
|
| 230 |
+
finetune_vision_layers=True,
|
| 231 |
+
finetune_language_layers=True,
|
| 232 |
+
finetune_attention_modules=True,
|
| 233 |
+
finetune_mlp_modules=True,
|
| 234 |
+
r=args.lora_r,
|
| 235 |
+
lora_alpha=args.lora_alpha,
|
| 236 |
+
lora_dropout=0,
|
| 237 |
+
bias="none",
|
| 238 |
+
random_state=3407,
|
| 239 |
+
use_rslora=False,
|
| 240 |
+
loftq_config=None,
|
| 241 |
+
target_modules="all-linear",
|
| 242 |
+
)
|
| 243 |
+
|
| 244 |
+
# Apply chat template (required for base models)
|
| 245 |
+
processor = get_chat_template(processor, "gemma-3")
|
| 246 |
+
print(f"Model loaded in {time.time() - start:.1f}s")
|
| 247 |
+
|
| 248 |
+
# 2. Load streaming dataset
|
| 249 |
+
print("\n[2/5] Loading streaming dataset...")
|
| 250 |
+
start = time.time()
|
| 251 |
+
|
| 252 |
+
dataset = load_dataset(
|
| 253 |
+
args.dataset,
|
| 254 |
+
split="train",
|
| 255 |
+
streaming=True,
|
| 256 |
+
)
|
| 257 |
+
|
| 258 |
+
# Peek at first sample to show info
|
| 259 |
+
sample = next(iter(dataset))
|
| 260 |
+
print(f"Dataset ready in {time.time() - start:.1f}s")
|
| 261 |
+
if "messages" in sample:
|
| 262 |
+
print(f" Sample has {len(sample['messages'])} messages")
|
| 263 |
+
if "images" in sample:
|
| 264 |
+
img_count = len(sample["images"]) if isinstance(sample["images"], list) else 1
|
| 265 |
+
print(f" Sample has {img_count} image(s)")
|
| 266 |
+
|
| 267 |
+
# Reload dataset (consumed one sample above)
|
| 268 |
+
dataset = load_dataset(
|
| 269 |
+
args.dataset,
|
| 270 |
+
split="train",
|
| 271 |
+
streaming=True,
|
| 272 |
+
)
|
| 273 |
+
|
| 274 |
+
# 3. Configure trainer
|
| 275 |
+
print("\n[3/5] Configuring trainer...")
|
| 276 |
+
|
| 277 |
+
# Enable training mode
|
| 278 |
+
FastVisionModel.for_training(model)
|
| 279 |
+
|
| 280 |
+
training_config = SFTConfig(
|
| 281 |
+
output_dir=args.save_local,
|
| 282 |
+
per_device_train_batch_size=args.batch_size,
|
| 283 |
+
gradient_accumulation_steps=args.gradient_accumulation,
|
| 284 |
+
gradient_checkpointing=True,
|
| 285 |
+
gradient_checkpointing_kwargs={"use_reentrant": False},
|
| 286 |
+
max_grad_norm=0.3,
|
| 287 |
+
warmup_ratio=0.03,
|
| 288 |
+
max_steps=args.max_steps,
|
| 289 |
+
learning_rate=args.learning_rate,
|
| 290 |
+
logging_steps=max(1, args.max_steps // 20),
|
| 291 |
+
save_strategy="steps",
|
| 292 |
+
optim="adamw_torch_fused",
|
| 293 |
+
weight_decay=0.001,
|
| 294 |
+
lr_scheduler_type="cosine",
|
| 295 |
+
seed=3407,
|
| 296 |
+
# VLM-specific settings (required for Unsloth)
|
| 297 |
+
remove_unused_columns=False,
|
| 298 |
+
dataset_text_field="",
|
| 299 |
+
dataset_kwargs={"skip_prepare_dataset": True},
|
| 300 |
+
max_length=args.max_seq_length,
|
| 301 |
+
# Logging
|
| 302 |
+
report_to="trackio",
|
| 303 |
+
run_name=f"gemma3-vlm-{args.max_steps}steps",
|
| 304 |
+
)
|
| 305 |
+
|
| 306 |
+
trainer = SFTTrainer(
|
| 307 |
+
model=model,
|
| 308 |
+
train_dataset=dataset,
|
| 309 |
+
processing_class=processor.tokenizer,
|
| 310 |
+
data_collator=UnslothVisionDataCollator(model, processor),
|
| 311 |
+
args=training_config,
|
| 312 |
+
)
|
| 313 |
+
|
| 314 |
+
# 4. Train
|
| 315 |
+
print(f"\n[4/5] Training for {args.max_steps} steps...")
|
| 316 |
+
start = time.time()
|
| 317 |
+
|
| 318 |
+
trainer.train()
|
| 319 |
+
|
| 320 |
+
train_time = time.time() - start
|
| 321 |
+
print(f"\nTraining completed in {train_time / 60:.1f} minutes")
|
| 322 |
+
print(f" Speed: {args.max_steps / train_time:.2f} steps/s")
|
| 323 |
+
|
| 324 |
+
# 5. Save and push
|
| 325 |
+
print("\n[5/5] Saving model...")
|
| 326 |
+
|
| 327 |
+
# Save locally
|
| 328 |
+
model.save_pretrained(args.save_local)
|
| 329 |
+
processor.save_pretrained(args.save_local)
|
| 330 |
+
print(f"Saved locally to {args.save_local}/")
|
| 331 |
+
|
| 332 |
+
# Push to Hub
|
| 333 |
+
print(f"\nPushing to {args.output_repo}...")
|
| 334 |
+
model.push_to_hub(args.output_repo)
|
| 335 |
+
processor.push_to_hub(args.output_repo)
|
| 336 |
+
print(f"Model available at: https://huggingface.co/{args.output_repo}")
|
| 337 |
+
|
| 338 |
+
# Update model card metadata with dataset info
|
| 339 |
+
from huggingface_hub import metadata_update
|
| 340 |
+
|
| 341 |
+
metadata_update(args.output_repo, {"datasets": [args.dataset]}, overwrite=True)
|
| 342 |
+
print(f" Model card updated with dataset: {args.dataset}")
|
| 343 |
+
|
| 344 |
+
print("\n" + "=" * 70)
|
| 345 |
+
print("Done!")
|
| 346 |
+
print("=" * 70)
|
| 347 |
+
|
| 348 |
+
|
| 349 |
+
if __name__ == "__main__":
|
| 350 |
+
# Show example usage if no arguments
|
| 351 |
+
if len(sys.argv) == 1:
|
| 352 |
+
print("=" * 70)
|
| 353 |
+
print("Gemma 3 4B VLM Streaming Fine-tuning with Unsloth")
|
| 354 |
+
print("=" * 70)
|
| 355 |
+
print("\nFine-tune Vision-Language Models using streaming datasets.")
|
| 356 |
+
print("Data streams directly from the Hub - no disk space needed.")
|
| 357 |
+
print("\nFeatures:")
|
| 358 |
+
print(" - ~60% less VRAM with Unsloth optimizations")
|
| 359 |
+
print(" - 2x faster training vs standard methods")
|
| 360 |
+
print(" - Trackio integration for monitoring")
|
| 361 |
+
print(" - Works with any VLM dataset in conversation format")
|
| 362 |
+
print("\nExample usage:")
|
| 363 |
+
print("\n uv run sft-gemma3-vlm.py \\")
|
| 364 |
+
print(" --max-steps 500 \\")
|
| 365 |
+
print(" --output-repo your-username/vlm-finetuned")
|
| 366 |
+
print("\nHF Jobs example:")
|
| 367 |
+
print("\n hf jobs uv run \\")
|
| 368 |
+
print(
|
| 369 |
+
" https://huggingface.co/datasets/unsloth/jobs/raw/main/sft-gemma3-vlm.py \\"
|
| 370 |
+
)
|
| 371 |
+
print(" --flavor a100-large --secrets HF_TOKEN \\")
|
| 372 |
+
print(" -- --max-steps 500 --output-repo your-username/vlm-finetuned")
|
| 373 |
+
print("\nFor full help: uv run sft-gemma3-vlm.py --help")
|
| 374 |
+
print("=" * 70)
|
| 375 |
+
sys.exit(0)
|
| 376 |
+
|
| 377 |
+
main()
|
sft-lfm2.5.py
ADDED
|
@@ -0,0 +1,539 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# /// script
|
| 2 |
+
# requires-python = ">=3.10"
|
| 3 |
+
# dependencies = [
|
| 4 |
+
# "unsloth",
|
| 5 |
+
# "datasets",
|
| 6 |
+
# "trl==0.22.2",
|
| 7 |
+
# "huggingface_hub[hf_transfer]",
|
| 8 |
+
# "trackio",
|
| 9 |
+
# "tensorboard",
|
| 10 |
+
# "transformers==4.57.3",
|
| 11 |
+
# ]
|
| 12 |
+
# ///
|
| 13 |
+
"""
|
| 14 |
+
Fine-tune LFM2.5-1.2B-Instruct (Liquid Foundation Model) using Unsloth optimizations.
|
| 15 |
+
|
| 16 |
+
Uses Unsloth for ~60% less VRAM and 2x faster training.
|
| 17 |
+
Supports epoch-based or step-based training with optional eval split.
|
| 18 |
+
|
| 19 |
+
Epoch-based training (recommended for full datasets):
|
| 20 |
+
uv run sft-lfm2.5.py \
|
| 21 |
+
--dataset mlabonne/FineTome-100k \
|
| 22 |
+
--num-epochs 1 \
|
| 23 |
+
--eval-split 0.2 \
|
| 24 |
+
--output-repo your-username/lfm-finetuned
|
| 25 |
+
|
| 26 |
+
Run on HF Jobs (1 epoch with eval):
|
| 27 |
+
hf jobs uv run sft-lfm2.5.py \
|
| 28 |
+
--flavor a10g-small --secrets HF_TOKEN --timeout 4h \
|
| 29 |
+
-- --dataset mlabonne/FineTome-100k \
|
| 30 |
+
--num-epochs 1 \
|
| 31 |
+
--eval-split 0.2 \
|
| 32 |
+
--output-repo your-username/lfm-finetuned
|
| 33 |
+
|
| 34 |
+
Step-based training (for quick tests):
|
| 35 |
+
uv run sft-lfm2.5.py \
|
| 36 |
+
--dataset mlabonne/FineTome-100k \
|
| 37 |
+
--max-steps 500 \
|
| 38 |
+
--output-repo your-username/lfm-finetuned
|
| 39 |
+
"""
|
| 40 |
+
|
| 41 |
+
import argparse
|
| 42 |
+
import logging
|
| 43 |
+
import os
|
| 44 |
+
import sys
|
| 45 |
+
import time
|
| 46 |
+
|
| 47 |
+
# Force unbuffered output for HF Jobs logs
|
| 48 |
+
sys.stdout.reconfigure(line_buffering=True)
|
| 49 |
+
sys.stderr.reconfigure(line_buffering=True)
|
| 50 |
+
|
| 51 |
+
logging.basicConfig(
|
| 52 |
+
level=logging.INFO,
|
| 53 |
+
format="%(asctime)s - %(levelname)s - %(message)s",
|
| 54 |
+
)
|
| 55 |
+
logger = logging.getLogger(__name__)
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def check_cuda():
|
| 59 |
+
"""Check CUDA availability and exit if not available."""
|
| 60 |
+
import torch
|
| 61 |
+
|
| 62 |
+
if not torch.cuda.is_available():
|
| 63 |
+
logger.error("CUDA is not available. This script requires a GPU.")
|
| 64 |
+
logger.error("Run on a machine with a CUDA-capable GPU or use HF Jobs:")
|
| 65 |
+
logger.error(" hf jobs uv run sft-lfm2.5.py --flavor a10g-small ...")
|
| 66 |
+
sys.exit(1)
|
| 67 |
+
logger.info(f"CUDA available: {torch.cuda.get_device_name(0)}")
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def parse_args():
|
| 71 |
+
parser = argparse.ArgumentParser(
|
| 72 |
+
description="Fine-tune LFM2.5-1.2B-Instruct with Unsloth",
|
| 73 |
+
formatter_class=argparse.RawDescriptionHelpFormatter,
|
| 74 |
+
epilog="""
|
| 75 |
+
Examples:
|
| 76 |
+
# Quick test run
|
| 77 |
+
uv run sft-lfm2.5.py \\
|
| 78 |
+
--dataset mlabonne/FineTome-100k \\
|
| 79 |
+
--max-steps 50 \\
|
| 80 |
+
--output-repo username/lfm-test
|
| 81 |
+
|
| 82 |
+
# Full training with eval
|
| 83 |
+
uv run sft-lfm2.5.py \\
|
| 84 |
+
--dataset mlabonne/FineTome-100k \\
|
| 85 |
+
--num-epochs 1 \\
|
| 86 |
+
--eval-split 0.2 \\
|
| 87 |
+
--output-repo username/lfm-finetuned
|
| 88 |
+
|
| 89 |
+
# With Trackio monitoring
|
| 90 |
+
uv run sft-lfm2.5.py \\
|
| 91 |
+
--dataset mlabonne/FineTome-100k \\
|
| 92 |
+
--num-epochs 1 \\
|
| 93 |
+
--output-repo username/lfm-finetuned \\
|
| 94 |
+
--trackio-space username/trackio
|
| 95 |
+
""",
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
# Model and data
|
| 99 |
+
parser.add_argument(
|
| 100 |
+
"--base-model",
|
| 101 |
+
default="LiquidAI/LFM2.5-1.2B-Instruct",
|
| 102 |
+
help="Base model (default: LiquidAI/LFM2.5-1.2B-Instruct)",
|
| 103 |
+
)
|
| 104 |
+
parser.add_argument(
|
| 105 |
+
"--dataset",
|
| 106 |
+
required=True,
|
| 107 |
+
help="Dataset in ShareGPT/conversation format (e.g., mlabonne/FineTome-100k)",
|
| 108 |
+
)
|
| 109 |
+
parser.add_argument(
|
| 110 |
+
"--output-repo",
|
| 111 |
+
required=True,
|
| 112 |
+
help="HF Hub repo to push model to (e.g., 'username/lfm-finetuned')",
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
# Training config
|
| 116 |
+
parser.add_argument(
|
| 117 |
+
"--num-epochs",
|
| 118 |
+
type=float,
|
| 119 |
+
default=None,
|
| 120 |
+
help="Number of epochs (default: None). Use instead of --max-steps.",
|
| 121 |
+
)
|
| 122 |
+
parser.add_argument(
|
| 123 |
+
"--max-steps",
|
| 124 |
+
type=int,
|
| 125 |
+
default=None,
|
| 126 |
+
help="Training steps (default: None). Use for quick tests or streaming.",
|
| 127 |
+
)
|
| 128 |
+
parser.add_argument(
|
| 129 |
+
"--batch-size",
|
| 130 |
+
type=int,
|
| 131 |
+
default=2,
|
| 132 |
+
help="Per-device batch size (default: 2)",
|
| 133 |
+
)
|
| 134 |
+
parser.add_argument(
|
| 135 |
+
"--gradient-accumulation",
|
| 136 |
+
type=int,
|
| 137 |
+
default=4,
|
| 138 |
+
help="Gradient accumulation steps (default: 4). Effective batch = batch-size * this",
|
| 139 |
+
)
|
| 140 |
+
parser.add_argument(
|
| 141 |
+
"--learning-rate",
|
| 142 |
+
type=float,
|
| 143 |
+
default=2e-4,
|
| 144 |
+
help="Learning rate (default: 2e-4)",
|
| 145 |
+
)
|
| 146 |
+
parser.add_argument(
|
| 147 |
+
"--max-seq-length",
|
| 148 |
+
type=int,
|
| 149 |
+
default=2048,
|
| 150 |
+
help="Maximum sequence length (default: 2048)",
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
# LoRA config
|
| 154 |
+
parser.add_argument(
|
| 155 |
+
"--lora-r",
|
| 156 |
+
type=int,
|
| 157 |
+
default=16,
|
| 158 |
+
help="LoRA rank (default: 16). Higher = more capacity but more VRAM",
|
| 159 |
+
)
|
| 160 |
+
parser.add_argument(
|
| 161 |
+
"--lora-alpha",
|
| 162 |
+
type=int,
|
| 163 |
+
default=16,
|
| 164 |
+
help="LoRA alpha (default: 16). Same as r per Unsloth recommendation",
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
# Logging
|
| 168 |
+
parser.add_argument(
|
| 169 |
+
"--trackio-space",
|
| 170 |
+
default=None,
|
| 171 |
+
help="HF Space for Trackio dashboard (e.g., 'username/trackio')",
|
| 172 |
+
)
|
| 173 |
+
parser.add_argument(
|
| 174 |
+
"--run-name",
|
| 175 |
+
default=None,
|
| 176 |
+
help="Custom run name for Trackio (default: auto-generated)",
|
| 177 |
+
)
|
| 178 |
+
parser.add_argument(
|
| 179 |
+
"--save-local",
|
| 180 |
+
default="lfm-output",
|
| 181 |
+
help="Local directory to save model (default: lfm-output)",
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
# Evaluation and data control
|
| 185 |
+
parser.add_argument(
|
| 186 |
+
"--eval-split",
|
| 187 |
+
type=float,
|
| 188 |
+
default=0.0,
|
| 189 |
+
help="Fraction of data for evaluation (0.0-0.5). Default: 0.0 (no eval)",
|
| 190 |
+
)
|
| 191 |
+
parser.add_argument(
|
| 192 |
+
"--num-samples",
|
| 193 |
+
type=int,
|
| 194 |
+
default=None,
|
| 195 |
+
help="Limit samples (default: None = use all)",
|
| 196 |
+
)
|
| 197 |
+
parser.add_argument(
|
| 198 |
+
"--seed",
|
| 199 |
+
type=int,
|
| 200 |
+
default=3407,
|
| 201 |
+
help="Random seed for reproducibility (default: 3407)",
|
| 202 |
+
)
|
| 203 |
+
parser.add_argument(
|
| 204 |
+
"--merge-model",
|
| 205 |
+
action="store_true",
|
| 206 |
+
default=False,
|
| 207 |
+
help="Merge LoRA weights into base model before uploading (larger file, easier to use)",
|
| 208 |
+
)
|
| 209 |
+
|
| 210 |
+
return parser.parse_args()
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
def main():
|
| 214 |
+
args = parse_args()
|
| 215 |
+
|
| 216 |
+
# Validate epochs/steps configuration
|
| 217 |
+
if not args.num_epochs and not args.max_steps:
|
| 218 |
+
args.num_epochs = 1
|
| 219 |
+
logger.info("Using default --num-epochs=1")
|
| 220 |
+
|
| 221 |
+
# Determine training duration display
|
| 222 |
+
if args.num_epochs:
|
| 223 |
+
duration_str = f"{args.num_epochs} epoch(s)"
|
| 224 |
+
else:
|
| 225 |
+
duration_str = f"{args.max_steps} steps"
|
| 226 |
+
|
| 227 |
+
print("=" * 70)
|
| 228 |
+
print("LFM2.5-1.2B Fine-tuning with Unsloth")
|
| 229 |
+
print("=" * 70)
|
| 230 |
+
print("\nConfiguration:")
|
| 231 |
+
print(f" Base model: {args.base_model}")
|
| 232 |
+
print(f" Dataset: {args.dataset}")
|
| 233 |
+
print(f" Num samples: {args.num_samples or 'all'}")
|
| 234 |
+
print(
|
| 235 |
+
f" Eval split: {args.eval_split if args.eval_split > 0 else '(disabled)'}"
|
| 236 |
+
)
|
| 237 |
+
print(f" Seed: {args.seed}")
|
| 238 |
+
print(f" Training: {duration_str}")
|
| 239 |
+
print(
|
| 240 |
+
f" Batch size: {args.batch_size} x {args.gradient_accumulation} = {args.batch_size * args.gradient_accumulation}"
|
| 241 |
+
)
|
| 242 |
+
print(f" Learning rate: {args.learning_rate}")
|
| 243 |
+
print(f" LoRA rank: {args.lora_r}")
|
| 244 |
+
print(f" Max seq length: {args.max_seq_length}")
|
| 245 |
+
print(f" Output repo: {args.output_repo}")
|
| 246 |
+
print(f" Trackio space: {args.trackio_space or '(not configured)'}")
|
| 247 |
+
print()
|
| 248 |
+
|
| 249 |
+
# Check CUDA before heavy imports
|
| 250 |
+
check_cuda()
|
| 251 |
+
|
| 252 |
+
# Enable fast transfers
|
| 253 |
+
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
| 254 |
+
|
| 255 |
+
# Set Trackio space if provided
|
| 256 |
+
if args.trackio_space:
|
| 257 |
+
os.environ["TRACKIO_SPACE_ID"] = args.trackio_space
|
| 258 |
+
logger.info(
|
| 259 |
+
f"Trackio dashboard: https://huggingface.co/spaces/{args.trackio_space}"
|
| 260 |
+
)
|
| 261 |
+
|
| 262 |
+
# Import heavy dependencies
|
| 263 |
+
from unsloth import FastLanguageModel
|
| 264 |
+
from unsloth.chat_templates import standardize_data_formats, train_on_responses_only
|
| 265 |
+
from datasets import load_dataset
|
| 266 |
+
from trl import SFTTrainer, SFTConfig
|
| 267 |
+
from huggingface_hub import login
|
| 268 |
+
|
| 269 |
+
# Login to Hub
|
| 270 |
+
token = os.environ.get("HF_TOKEN") or os.environ.get("hfjob")
|
| 271 |
+
if token:
|
| 272 |
+
login(token=token)
|
| 273 |
+
logger.info("Logged in to Hugging Face Hub")
|
| 274 |
+
else:
|
| 275 |
+
logger.warning("HF_TOKEN not set - model upload may fail")
|
| 276 |
+
|
| 277 |
+
# 1. Load model
|
| 278 |
+
print("\n[1/5] Loading model...")
|
| 279 |
+
start = time.time()
|
| 280 |
+
|
| 281 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
| 282 |
+
model_name=args.base_model,
|
| 283 |
+
max_seq_length=args.max_seq_length,
|
| 284 |
+
load_in_4bit=False,
|
| 285 |
+
load_in_8bit=False,
|
| 286 |
+
load_in_16bit=True,
|
| 287 |
+
full_finetuning=False,
|
| 288 |
+
)
|
| 289 |
+
|
| 290 |
+
# Add LoRA adapters with LFM-specific target modules
|
| 291 |
+
model = FastLanguageModel.get_peft_model(
|
| 292 |
+
model,
|
| 293 |
+
r=args.lora_r,
|
| 294 |
+
target_modules=[
|
| 295 |
+
"q_proj",
|
| 296 |
+
"k_proj",
|
| 297 |
+
"v_proj",
|
| 298 |
+
"out_proj",
|
| 299 |
+
"in_proj",
|
| 300 |
+
"w1",
|
| 301 |
+
"w2",
|
| 302 |
+
"w3",
|
| 303 |
+
],
|
| 304 |
+
lora_alpha=args.lora_alpha,
|
| 305 |
+
lora_dropout=0,
|
| 306 |
+
bias="none",
|
| 307 |
+
use_gradient_checkpointing="unsloth",
|
| 308 |
+
random_state=args.seed,
|
| 309 |
+
use_rslora=False,
|
| 310 |
+
loftq_config=None,
|
| 311 |
+
)
|
| 312 |
+
print(f"Model loaded in {time.time() - start:.1f}s")
|
| 313 |
+
|
| 314 |
+
# 2. Load and prepare dataset
|
| 315 |
+
print("\n[2/5] Loading dataset...")
|
| 316 |
+
start = time.time()
|
| 317 |
+
|
| 318 |
+
dataset = load_dataset(args.dataset, split="train")
|
| 319 |
+
print(f" Dataset has {len(dataset)} total samples")
|
| 320 |
+
|
| 321 |
+
if args.num_samples:
|
| 322 |
+
dataset = dataset.select(range(min(args.num_samples, len(dataset))))
|
| 323 |
+
print(f" Limited to {len(dataset)} samples")
|
| 324 |
+
|
| 325 |
+
# Auto-detect and normalize conversation column
|
| 326 |
+
for col in ["messages", "conversations", "conversation"]:
|
| 327 |
+
if col in dataset.column_names and isinstance(dataset[0][col], list):
|
| 328 |
+
if col != "conversations":
|
| 329 |
+
dataset = dataset.rename_column(col, "conversations")
|
| 330 |
+
break
|
| 331 |
+
dataset = standardize_data_formats(dataset)
|
| 332 |
+
|
| 333 |
+
# Apply chat template
|
| 334 |
+
def formatting_prompts_func(examples):
|
| 335 |
+
texts = tokenizer.apply_chat_template(
|
| 336 |
+
examples["conversations"],
|
| 337 |
+
tokenize=False,
|
| 338 |
+
add_generation_prompt=False,
|
| 339 |
+
)
|
| 340 |
+
# Remove BOS token to avoid duplicates
|
| 341 |
+
return {"text": [x.removeprefix(tokenizer.bos_token) for x in texts]}
|
| 342 |
+
|
| 343 |
+
dataset = dataset.map(formatting_prompts_func, batched=True)
|
| 344 |
+
|
| 345 |
+
# Split for evaluation if requested
|
| 346 |
+
if args.eval_split > 0:
|
| 347 |
+
split = dataset.train_test_split(test_size=args.eval_split, seed=args.seed)
|
| 348 |
+
train_data = split["train"]
|
| 349 |
+
eval_data = split["test"]
|
| 350 |
+
print(f" Train: {len(train_data)} samples, Eval: {len(eval_data)} samples")
|
| 351 |
+
else:
|
| 352 |
+
train_data = dataset
|
| 353 |
+
eval_data = None
|
| 354 |
+
|
| 355 |
+
print(f" Dataset ready in {time.time() - start:.1f}s")
|
| 356 |
+
|
| 357 |
+
# 3. Configure trainer
|
| 358 |
+
print("\n[3/5] Configuring trainer...")
|
| 359 |
+
|
| 360 |
+
# Calculate steps per epoch for logging/eval intervals
|
| 361 |
+
effective_batch = args.batch_size * args.gradient_accumulation
|
| 362 |
+
num_samples = len(train_data)
|
| 363 |
+
steps_per_epoch = num_samples // effective_batch
|
| 364 |
+
|
| 365 |
+
# Determine run name and logging steps
|
| 366 |
+
if args.run_name:
|
| 367 |
+
run_name = args.run_name
|
| 368 |
+
elif args.num_epochs:
|
| 369 |
+
run_name = f"lfm2.5-sft-{args.num_epochs}ep"
|
| 370 |
+
else:
|
| 371 |
+
run_name = f"lfm2.5-sft-{args.max_steps}steps"
|
| 372 |
+
|
| 373 |
+
if args.num_epochs:
|
| 374 |
+
logging_steps = max(1, steps_per_epoch // 10)
|
| 375 |
+
save_steps = max(1, steps_per_epoch // 4)
|
| 376 |
+
else:
|
| 377 |
+
logging_steps = max(1, args.max_steps // 20)
|
| 378 |
+
save_steps = max(1, args.max_steps // 4)
|
| 379 |
+
|
| 380 |
+
# Determine reporting backend
|
| 381 |
+
if args.trackio_space:
|
| 382 |
+
report_to = ["tensorboard", "trackio"]
|
| 383 |
+
else:
|
| 384 |
+
report_to = ["tensorboard"]
|
| 385 |
+
|
| 386 |
+
training_config = SFTConfig(
|
| 387 |
+
output_dir=args.save_local,
|
| 388 |
+
dataset_text_field="text",
|
| 389 |
+
per_device_train_batch_size=args.batch_size,
|
| 390 |
+
gradient_accumulation_steps=args.gradient_accumulation,
|
| 391 |
+
warmup_steps=5,
|
| 392 |
+
num_train_epochs=args.num_epochs if args.num_epochs else 1,
|
| 393 |
+
max_steps=args.max_steps if args.max_steps else -1,
|
| 394 |
+
learning_rate=args.learning_rate,
|
| 395 |
+
logging_steps=logging_steps,
|
| 396 |
+
optim="adamw_8bit",
|
| 397 |
+
weight_decay=0.01,
|
| 398 |
+
lr_scheduler_type="linear",
|
| 399 |
+
seed=args.seed,
|
| 400 |
+
max_length=args.max_seq_length,
|
| 401 |
+
report_to=report_to,
|
| 402 |
+
run_name=run_name,
|
| 403 |
+
push_to_hub=True,
|
| 404 |
+
hub_model_id=args.output_repo,
|
| 405 |
+
save_steps=save_steps,
|
| 406 |
+
save_total_limit=3,
|
| 407 |
+
)
|
| 408 |
+
|
| 409 |
+
# Add evaluation config if eval is enabled
|
| 410 |
+
if eval_data:
|
| 411 |
+
if args.num_epochs:
|
| 412 |
+
training_config.eval_strategy = "epoch"
|
| 413 |
+
print(" Evaluation enabled: every epoch")
|
| 414 |
+
else:
|
| 415 |
+
training_config.eval_strategy = "steps"
|
| 416 |
+
training_config.eval_steps = max(1, args.max_steps // 5)
|
| 417 |
+
print(f" Evaluation enabled: every {training_config.eval_steps} steps")
|
| 418 |
+
|
| 419 |
+
trainer = SFTTrainer(
|
| 420 |
+
model=model,
|
| 421 |
+
tokenizer=tokenizer,
|
| 422 |
+
train_dataset=train_data,
|
| 423 |
+
eval_dataset=eval_data,
|
| 424 |
+
args=training_config,
|
| 425 |
+
)
|
| 426 |
+
|
| 427 |
+
# Train on responses only (mask user inputs)
|
| 428 |
+
trainer = train_on_responses_only(
|
| 429 |
+
trainer,
|
| 430 |
+
instruction_part="<|im_start|>user\n",
|
| 431 |
+
response_part="<|im_start|>assistant\n",
|
| 432 |
+
)
|
| 433 |
+
|
| 434 |
+
# 4. Train
|
| 435 |
+
print(f"\n[4/5] Training for {duration_str}...")
|
| 436 |
+
if args.num_epochs:
|
| 437 |
+
print(
|
| 438 |
+
f" (~{steps_per_epoch} steps/epoch, {int(steps_per_epoch * args.num_epochs)} total steps)"
|
| 439 |
+
)
|
| 440 |
+
start = time.time()
|
| 441 |
+
|
| 442 |
+
train_result = trainer.train()
|
| 443 |
+
|
| 444 |
+
train_time = time.time() - start
|
| 445 |
+
total_steps = train_result.metrics.get(
|
| 446 |
+
"train_steps", args.max_steps or steps_per_epoch * args.num_epochs
|
| 447 |
+
)
|
| 448 |
+
print(f"\nTraining completed in {train_time / 60:.1f} minutes")
|
| 449 |
+
print(f" Speed: {total_steps / train_time:.2f} steps/s")
|
| 450 |
+
|
| 451 |
+
# Print training metrics
|
| 452 |
+
train_loss = train_result.metrics.get("train_loss")
|
| 453 |
+
if train_loss:
|
| 454 |
+
print(f" Final train loss: {train_loss:.4f}")
|
| 455 |
+
|
| 456 |
+
# Print eval results if eval was enabled
|
| 457 |
+
if eval_data:
|
| 458 |
+
print("\nRunning final evaluation...")
|
| 459 |
+
try:
|
| 460 |
+
eval_results = trainer.evaluate()
|
| 461 |
+
eval_loss = eval_results.get("eval_loss")
|
| 462 |
+
if eval_loss:
|
| 463 |
+
print(f" Final eval loss: {eval_loss:.4f}")
|
| 464 |
+
if train_loss:
|
| 465 |
+
ratio = eval_loss / train_loss
|
| 466 |
+
if ratio > 1.5:
|
| 467 |
+
print(
|
| 468 |
+
f" Warning: Eval loss is {ratio:.1f}x train loss - possible overfitting"
|
| 469 |
+
)
|
| 470 |
+
else:
|
| 471 |
+
print(
|
| 472 |
+
f" Eval/train ratio: {ratio:.2f} - model generalizes well"
|
| 473 |
+
)
|
| 474 |
+
except Exception as e:
|
| 475 |
+
print(f" Warning: Final evaluation failed: {e}")
|
| 476 |
+
print(" Continuing to save model...")
|
| 477 |
+
|
| 478 |
+
# 5. Save and push
|
| 479 |
+
print("\n[5/5] Saving model...")
|
| 480 |
+
|
| 481 |
+
if args.merge_model:
|
| 482 |
+
print("Merging LoRA weights into base model...")
|
| 483 |
+
print(f"\nPushing merged model to {args.output_repo}...")
|
| 484 |
+
model.push_to_hub_merged(
|
| 485 |
+
args.output_repo,
|
| 486 |
+
tokenizer=tokenizer,
|
| 487 |
+
save_method="merged_16bit",
|
| 488 |
+
)
|
| 489 |
+
print(f"Merged model available at: https://huggingface.co/{args.output_repo}")
|
| 490 |
+
else:
|
| 491 |
+
model.save_pretrained(args.save_local)
|
| 492 |
+
tokenizer.save_pretrained(args.save_local)
|
| 493 |
+
print(f"Saved locally to {args.save_local}/")
|
| 494 |
+
|
| 495 |
+
print(f"\nPushing adapter to {args.output_repo}...")
|
| 496 |
+
model.push_to_hub(args.output_repo, tokenizer=tokenizer)
|
| 497 |
+
print(f"Adapter available at: https://huggingface.co/{args.output_repo}")
|
| 498 |
+
|
| 499 |
+
# Update model card metadata with dataset info
|
| 500 |
+
from huggingface_hub import metadata_update
|
| 501 |
+
|
| 502 |
+
metadata_update(args.output_repo, {"datasets": [args.dataset]}, overwrite=True)
|
| 503 |
+
print(f" Model card updated with dataset: {args.dataset}")
|
| 504 |
+
|
| 505 |
+
print("\n" + "=" * 70)
|
| 506 |
+
print("Done!")
|
| 507 |
+
print("=" * 70)
|
| 508 |
+
|
| 509 |
+
|
| 510 |
+
if __name__ == "__main__":
|
| 511 |
+
if len(sys.argv) == 1:
|
| 512 |
+
print("=" * 70)
|
| 513 |
+
print("LFM2.5-1.2B Fine-tuning with Unsloth")
|
| 514 |
+
print("=" * 70)
|
| 515 |
+
print("\nFine-tune Liquid Foundation Model with optional train/eval split.")
|
| 516 |
+
print("\nFeatures:")
|
| 517 |
+
print(" - ~60% less VRAM with Unsloth optimizations")
|
| 518 |
+
print(" - 2x faster training vs standard methods")
|
| 519 |
+
print(" - Epoch-based or step-based training")
|
| 520 |
+
print(" - Optional evaluation to detect overfitting")
|
| 521 |
+
print(" - Trains only on assistant responses (masked user inputs)")
|
| 522 |
+
print("\nEpoch-based training:")
|
| 523 |
+
print("\n uv run sft-lfm2.5.py \\")
|
| 524 |
+
print(" --dataset mlabonne/FineTome-100k \\")
|
| 525 |
+
print(" --num-epochs 1 \\")
|
| 526 |
+
print(" --eval-split 0.2 \\")
|
| 527 |
+
print(" --output-repo your-username/lfm-finetuned")
|
| 528 |
+
print("\nHF Jobs example:")
|
| 529 |
+
print("\n hf jobs uv run sft-lfm2.5.py \\")
|
| 530 |
+
print(" --flavor a10g-small --secrets HF_TOKEN --timeout 4h \\")
|
| 531 |
+
print(" -- --dataset mlabonne/FineTome-100k \\")
|
| 532 |
+
print(" --num-epochs 1 \\")
|
| 533 |
+
print(" --eval-split 0.2 \\")
|
| 534 |
+
print(" --output-repo your-username/lfm-finetuned")
|
| 535 |
+
print("\nFor full help: uv run sft-lfm2.5.py --help")
|
| 536 |
+
print("=" * 70)
|
| 537 |
+
sys.exit(0)
|
| 538 |
+
|
| 539 |
+
main()
|
sft-qwen3-vl.py
ADDED
|
@@ -0,0 +1,596 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# /// script
|
| 2 |
+
# requires-python = ">=3.10"
|
| 3 |
+
# dependencies = [
|
| 4 |
+
# "unsloth",
|
| 5 |
+
# "datasets",
|
| 6 |
+
# "trl==0.22.2",
|
| 7 |
+
# "huggingface_hub[hf_transfer]",
|
| 8 |
+
# "trackio",
|
| 9 |
+
# "tensorboard",
|
| 10 |
+
# "transformers==4.57.1",
|
| 11 |
+
# ]
|
| 12 |
+
# ///
|
| 13 |
+
"""
|
| 14 |
+
Fine-tune Qwen3-VL-8B Vision Language Model using Unsloth optimizations.
|
| 15 |
+
|
| 16 |
+
Uses Unsloth for ~60% less VRAM and 2x faster training.
|
| 17 |
+
Supports epoch-based or step-based training with optional eval split.
|
| 18 |
+
|
| 19 |
+
Epoch-based training (recommended for full datasets):
|
| 20 |
+
uv run sft-qwen3-vl.py \
|
| 21 |
+
--num-epochs 1 \
|
| 22 |
+
--eval-split 0.2 \
|
| 23 |
+
--output-repo your-username/vlm-finetuned
|
| 24 |
+
|
| 25 |
+
Run on HF Jobs (1 epoch with eval):
|
| 26 |
+
hf jobs uv run \
|
| 27 |
+
https://huggingface.co/datasets/unsloth/jobs/raw/main/sft-qwen3-vl.py \
|
| 28 |
+
--flavor a100-large --secrets HF_TOKEN --timeout 4h \
|
| 29 |
+
-- --num-epochs 1 --eval-split 0.2 --output-repo your-username/vlm-finetuned
|
| 30 |
+
|
| 31 |
+
Step-based training (for streaming or quick tests):
|
| 32 |
+
uv run sft-qwen3-vl.py \
|
| 33 |
+
--streaming \
|
| 34 |
+
--max-steps 500 \
|
| 35 |
+
--output-repo your-username/vlm-finetuned
|
| 36 |
+
|
| 37 |
+
Quick test with limited samples:
|
| 38 |
+
uv run sft-qwen3-vl.py \
|
| 39 |
+
--num-samples 500 \
|
| 40 |
+
--num-epochs 2 \
|
| 41 |
+
--eval-split 0.2 \
|
| 42 |
+
--output-repo your-username/vlm-test
|
| 43 |
+
"""
|
| 44 |
+
|
| 45 |
+
import argparse
|
| 46 |
+
import logging
|
| 47 |
+
import os
|
| 48 |
+
import sys
|
| 49 |
+
import time
|
| 50 |
+
|
| 51 |
+
# Force unbuffered output for HF Jobs logs
|
| 52 |
+
sys.stdout.reconfigure(line_buffering=True)
|
| 53 |
+
sys.stderr.reconfigure(line_buffering=True)
|
| 54 |
+
|
| 55 |
+
logging.basicConfig(
|
| 56 |
+
level=logging.INFO,
|
| 57 |
+
format="%(asctime)s - %(levelname)s - %(message)s",
|
| 58 |
+
)
|
| 59 |
+
logger = logging.getLogger(__name__)
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def check_cuda():
|
| 63 |
+
"""Check CUDA availability and exit if not available."""
|
| 64 |
+
import torch
|
| 65 |
+
|
| 66 |
+
if not torch.cuda.is_available():
|
| 67 |
+
logger.error("CUDA is not available. This script requires a GPU.")
|
| 68 |
+
logger.error("Run on a machine with a CUDA-capable GPU or use HF Jobs:")
|
| 69 |
+
logger.error(
|
| 70 |
+
" hf jobs uv run https://huggingface.co/datasets/unsloth/jobs/raw/main/sft-qwen3-vl.py --flavor a100-large ..."
|
| 71 |
+
)
|
| 72 |
+
sys.exit(1)
|
| 73 |
+
logger.info(f"CUDA available: {torch.cuda.get_device_name(0)}")
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
def parse_args():
|
| 77 |
+
parser = argparse.ArgumentParser(
|
| 78 |
+
description="Fine-tune Qwen3-VL-8B with streaming datasets using Unsloth",
|
| 79 |
+
formatter_class=argparse.RawDescriptionHelpFormatter,
|
| 80 |
+
epilog="""
|
| 81 |
+
Examples:
|
| 82 |
+
# Quick test run
|
| 83 |
+
uv run sft-qwen3-vl.py \\
|
| 84 |
+
--max-steps 50 \\
|
| 85 |
+
--output-repo username/vlm-test
|
| 86 |
+
|
| 87 |
+
# Full training with Trackio monitoring
|
| 88 |
+
uv run sft-qwen3-vl.py \\
|
| 89 |
+
--max-steps 500 \\
|
| 90 |
+
--output-repo username/vlm-finetuned \\
|
| 91 |
+
--trackio-space username/trackio
|
| 92 |
+
|
| 93 |
+
# Custom dataset and model
|
| 94 |
+
uv run sft-qwen3-vl.py \\
|
| 95 |
+
--base-model unsloth/Qwen3-VL-8B-Instruct-unsloth-bnb-4bit \\
|
| 96 |
+
--dataset your-username/your-vlm-dataset \\
|
| 97 |
+
--max-steps 1000 \\
|
| 98 |
+
--output-repo username/custom-vlm
|
| 99 |
+
""",
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
# Model and data
|
| 103 |
+
parser.add_argument(
|
| 104 |
+
"--base-model",
|
| 105 |
+
default="unsloth/Qwen3-VL-8B-Instruct-unsloth-bnb-4bit",
|
| 106 |
+
help="Base VLM model (default: unsloth/Qwen3-VL-8B-Instruct-unsloth-bnb-4bit)",
|
| 107 |
+
)
|
| 108 |
+
parser.add_argument(
|
| 109 |
+
"--dataset",
|
| 110 |
+
default="davanstrien/iconclass-vlm-sft",
|
| 111 |
+
help="Dataset with 'images' and 'messages' columns (default: davanstrien/iconclass-vlm-sft)",
|
| 112 |
+
)
|
| 113 |
+
parser.add_argument(
|
| 114 |
+
"--output-repo",
|
| 115 |
+
required=True,
|
| 116 |
+
help="HF Hub repo to push model to (e.g., 'username/vlm-finetuned')",
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
# Training config
|
| 120 |
+
parser.add_argument(
|
| 121 |
+
"--num-epochs",
|
| 122 |
+
type=float,
|
| 123 |
+
default=None,
|
| 124 |
+
help="Number of epochs (default: None). Use instead of --max-steps for non-streaming mode.",
|
| 125 |
+
)
|
| 126 |
+
parser.add_argument(
|
| 127 |
+
"--max-steps",
|
| 128 |
+
type=int,
|
| 129 |
+
default=None,
|
| 130 |
+
help="Training steps (default: None). Required for streaming mode, optional otherwise.",
|
| 131 |
+
)
|
| 132 |
+
parser.add_argument(
|
| 133 |
+
"--batch-size",
|
| 134 |
+
type=int,
|
| 135 |
+
default=2,
|
| 136 |
+
help="Per-device batch size (default: 2)",
|
| 137 |
+
)
|
| 138 |
+
parser.add_argument(
|
| 139 |
+
"--gradient-accumulation",
|
| 140 |
+
type=int,
|
| 141 |
+
default=4,
|
| 142 |
+
help="Gradient accumulation steps (default: 4). Effective batch = batch-size * this",
|
| 143 |
+
)
|
| 144 |
+
parser.add_argument(
|
| 145 |
+
"--learning-rate",
|
| 146 |
+
type=float,
|
| 147 |
+
default=2e-4,
|
| 148 |
+
help="Learning rate (default: 2e-4)",
|
| 149 |
+
)
|
| 150 |
+
parser.add_argument(
|
| 151 |
+
"--max-seq-length",
|
| 152 |
+
type=int,
|
| 153 |
+
default=2048,
|
| 154 |
+
help="Maximum sequence length (default: 2048)",
|
| 155 |
+
)
|
| 156 |
+
|
| 157 |
+
# LoRA config
|
| 158 |
+
parser.add_argument(
|
| 159 |
+
"--lora-r",
|
| 160 |
+
type=int,
|
| 161 |
+
default=16,
|
| 162 |
+
help="LoRA rank (default: 16). Higher = more capacity but more VRAM",
|
| 163 |
+
)
|
| 164 |
+
parser.add_argument(
|
| 165 |
+
"--lora-alpha",
|
| 166 |
+
type=int,
|
| 167 |
+
default=16,
|
| 168 |
+
help="LoRA alpha (default: 16). Same as r per Unsloth notebook",
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
+
# Logging
|
| 172 |
+
parser.add_argument(
|
| 173 |
+
"--trackio-space",
|
| 174 |
+
default=None,
|
| 175 |
+
help="HF Space for Trackio dashboard (e.g., 'username/trackio')",
|
| 176 |
+
)
|
| 177 |
+
parser.add_argument(
|
| 178 |
+
"--run-name",
|
| 179 |
+
default=None,
|
| 180 |
+
help="Custom run name for Trackio (default: auto-generated from steps/epochs)",
|
| 181 |
+
)
|
| 182 |
+
parser.add_argument(
|
| 183 |
+
"--save-local",
|
| 184 |
+
default="vlm-qwen3-output",
|
| 185 |
+
help="Local directory to save model (default: vlm-qwen3-output)",
|
| 186 |
+
)
|
| 187 |
+
|
| 188 |
+
# Evaluation and data control
|
| 189 |
+
parser.add_argument(
|
| 190 |
+
"--eval-split",
|
| 191 |
+
type=float,
|
| 192 |
+
default=0.0,
|
| 193 |
+
help="Fraction of data for evaluation (0.0-0.5). Default: 0.0 (no eval)",
|
| 194 |
+
)
|
| 195 |
+
parser.add_argument(
|
| 196 |
+
"--num-samples",
|
| 197 |
+
type=int,
|
| 198 |
+
default=None,
|
| 199 |
+
help="Limit samples (default: None = use all for non-streaming, 500 for streaming)",
|
| 200 |
+
)
|
| 201 |
+
parser.add_argument(
|
| 202 |
+
"--seed",
|
| 203 |
+
type=int,
|
| 204 |
+
default=3407,
|
| 205 |
+
help="Random seed for reproducibility (default: 3407)",
|
| 206 |
+
)
|
| 207 |
+
parser.add_argument(
|
| 208 |
+
"--streaming",
|
| 209 |
+
action="store_true",
|
| 210 |
+
default=False,
|
| 211 |
+
help="Use streaming mode (default: False). Use for very large datasets.",
|
| 212 |
+
)
|
| 213 |
+
parser.add_argument(
|
| 214 |
+
"--merge-model",
|
| 215 |
+
action="store_true",
|
| 216 |
+
default=False,
|
| 217 |
+
help="Merge LoRA weights into base model before uploading (larger file, easier to use)",
|
| 218 |
+
)
|
| 219 |
+
|
| 220 |
+
return parser.parse_args()
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
def main():
|
| 224 |
+
args = parse_args()
|
| 225 |
+
|
| 226 |
+
# Validate epochs/steps configuration
|
| 227 |
+
if args.streaming and args.num_epochs:
|
| 228 |
+
logger.error(
|
| 229 |
+
"Cannot use --num-epochs with --streaming. Use --max-steps instead."
|
| 230 |
+
)
|
| 231 |
+
sys.exit(1)
|
| 232 |
+
if args.streaming and not args.max_steps:
|
| 233 |
+
args.max_steps = 500 # Default for streaming
|
| 234 |
+
logger.info("Using default --max-steps=500 for streaming mode")
|
| 235 |
+
if not args.streaming and not args.num_epochs and not args.max_steps:
|
| 236 |
+
args.num_epochs = 1 # Default to 1 epoch for non-streaming
|
| 237 |
+
logger.info("Using default --num-epochs=1 for non-streaming mode")
|
| 238 |
+
|
| 239 |
+
# Determine training duration display
|
| 240 |
+
if args.num_epochs:
|
| 241 |
+
duration_str = f"{args.num_epochs} epoch(s)"
|
| 242 |
+
else:
|
| 243 |
+
duration_str = f"{args.max_steps} steps"
|
| 244 |
+
|
| 245 |
+
print("=" * 70)
|
| 246 |
+
print("Qwen3-VL-8B Fine-tuning with Unsloth")
|
| 247 |
+
print("=" * 70)
|
| 248 |
+
print("\nConfiguration:")
|
| 249 |
+
print(f" Base model: {args.base_model}")
|
| 250 |
+
print(f" Dataset: {args.dataset}")
|
| 251 |
+
print(f" Streaming: {args.streaming}")
|
| 252 |
+
print(
|
| 253 |
+
f" Num samples: {args.num_samples or ('500' if args.streaming else 'all')}"
|
| 254 |
+
)
|
| 255 |
+
print(
|
| 256 |
+
f" Eval split: {args.eval_split if args.eval_split > 0 else '(disabled)'}"
|
| 257 |
+
)
|
| 258 |
+
print(f" Seed: {args.seed}")
|
| 259 |
+
print(f" Training: {duration_str}")
|
| 260 |
+
print(
|
| 261 |
+
f" Batch size: {args.batch_size} x {args.gradient_accumulation} = {args.batch_size * args.gradient_accumulation}"
|
| 262 |
+
)
|
| 263 |
+
print(f" Learning rate: {args.learning_rate}")
|
| 264 |
+
print(f" LoRA rank: {args.lora_r}")
|
| 265 |
+
print(f" Output repo: {args.output_repo}")
|
| 266 |
+
print(f" Trackio space: {args.trackio_space or '(not configured)'}")
|
| 267 |
+
print()
|
| 268 |
+
|
| 269 |
+
# Check CUDA before heavy imports
|
| 270 |
+
check_cuda()
|
| 271 |
+
|
| 272 |
+
# Enable fast transfers
|
| 273 |
+
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
| 274 |
+
|
| 275 |
+
# Set Trackio space if provided
|
| 276 |
+
if args.trackio_space:
|
| 277 |
+
os.environ["TRACKIO_SPACE_ID"] = args.trackio_space
|
| 278 |
+
logger.info(
|
| 279 |
+
f"Trackio dashboard: https://huggingface.co/spaces/{args.trackio_space}"
|
| 280 |
+
)
|
| 281 |
+
|
| 282 |
+
# Import heavy dependencies (note: import from unsloth.trainer for VLM)
|
| 283 |
+
from unsloth import FastVisionModel
|
| 284 |
+
from unsloth.trainer import UnslothVisionDataCollator
|
| 285 |
+
from datasets import load_dataset
|
| 286 |
+
from trl import SFTTrainer, SFTConfig
|
| 287 |
+
from huggingface_hub import login
|
| 288 |
+
|
| 289 |
+
# Login to Hub
|
| 290 |
+
token = os.environ.get("HF_TOKEN")
|
| 291 |
+
if token:
|
| 292 |
+
login(token=token)
|
| 293 |
+
logger.info("Logged in to Hugging Face Hub")
|
| 294 |
+
else:
|
| 295 |
+
logger.warning("HF_TOKEN not set - model upload may fail")
|
| 296 |
+
|
| 297 |
+
# 1. Load model (Qwen returns tokenizer, not processor)
|
| 298 |
+
print("\n[1/5] Loading model...")
|
| 299 |
+
start = time.time()
|
| 300 |
+
|
| 301 |
+
model, tokenizer = FastVisionModel.from_pretrained(
|
| 302 |
+
args.base_model,
|
| 303 |
+
load_in_4bit=True,
|
| 304 |
+
use_gradient_checkpointing="unsloth",
|
| 305 |
+
)
|
| 306 |
+
|
| 307 |
+
model = FastVisionModel.get_peft_model(
|
| 308 |
+
model,
|
| 309 |
+
finetune_vision_layers=True,
|
| 310 |
+
finetune_language_layers=True,
|
| 311 |
+
finetune_attention_modules=True,
|
| 312 |
+
finetune_mlp_modules=True,
|
| 313 |
+
r=args.lora_r,
|
| 314 |
+
lora_alpha=args.lora_alpha,
|
| 315 |
+
lora_dropout=0,
|
| 316 |
+
bias="none",
|
| 317 |
+
random_state=3407,
|
| 318 |
+
use_rslora=False,
|
| 319 |
+
loftq_config=None,
|
| 320 |
+
)
|
| 321 |
+
print(f"Model loaded in {time.time() - start:.1f}s")
|
| 322 |
+
|
| 323 |
+
# 2. Load dataset (streaming or non-streaming)
|
| 324 |
+
print(
|
| 325 |
+
f"\n[2/5] Loading dataset ({'streaming' if args.streaming else 'non-streaming'})..."
|
| 326 |
+
)
|
| 327 |
+
start = time.time()
|
| 328 |
+
|
| 329 |
+
if args.streaming:
|
| 330 |
+
# Streaming mode: take limited samples
|
| 331 |
+
dataset = load_dataset(args.dataset, split="train", streaming=True)
|
| 332 |
+
num_samples = args.num_samples or 500
|
| 333 |
+
|
| 334 |
+
# Peek at first sample to show info
|
| 335 |
+
sample = next(iter(dataset))
|
| 336 |
+
if "messages" in sample:
|
| 337 |
+
print(f" Sample has {len(sample['messages'])} messages")
|
| 338 |
+
if "images" in sample:
|
| 339 |
+
img_count = (
|
| 340 |
+
len(sample["images"]) if isinstance(sample["images"], list) else 1
|
| 341 |
+
)
|
| 342 |
+
print(f" Sample has {img_count} image(s)")
|
| 343 |
+
|
| 344 |
+
# Reload and take samples
|
| 345 |
+
dataset = load_dataset(args.dataset, split="train", streaming=True)
|
| 346 |
+
all_data = list(dataset.take(num_samples))
|
| 347 |
+
print(f" Loaded {len(all_data)} samples in {time.time() - start:.1f}s")
|
| 348 |
+
|
| 349 |
+
if args.eval_split > 0:
|
| 350 |
+
# Manual shuffle for streaming (no built-in split)
|
| 351 |
+
import random
|
| 352 |
+
|
| 353 |
+
random.seed(args.seed)
|
| 354 |
+
random.shuffle(all_data)
|
| 355 |
+
split_idx = int(len(all_data) * (1 - args.eval_split))
|
| 356 |
+
train_data = all_data[:split_idx]
|
| 357 |
+
eval_data = all_data[split_idx:]
|
| 358 |
+
print(f" Train: {len(train_data)} samples, Eval: {len(eval_data)} samples")
|
| 359 |
+
else:
|
| 360 |
+
train_data = all_data
|
| 361 |
+
eval_data = None
|
| 362 |
+
else:
|
| 363 |
+
# Non-streaming: use proper train_test_split
|
| 364 |
+
dataset = load_dataset(args.dataset, split="train")
|
| 365 |
+
print(f" Dataset has {len(dataset)} total samples")
|
| 366 |
+
|
| 367 |
+
# Peek at first sample
|
| 368 |
+
sample = dataset[0]
|
| 369 |
+
if "messages" in sample:
|
| 370 |
+
print(f" Sample has {len(sample['messages'])} messages")
|
| 371 |
+
if "images" in sample:
|
| 372 |
+
img_count = (
|
| 373 |
+
len(sample["images"]) if isinstance(sample["images"], list) else 1
|
| 374 |
+
)
|
| 375 |
+
print(f" Sample has {img_count} image(s)")
|
| 376 |
+
|
| 377 |
+
if args.num_samples:
|
| 378 |
+
dataset = dataset.select(range(min(args.num_samples, len(dataset))))
|
| 379 |
+
print(f" Limited to {len(dataset)} samples")
|
| 380 |
+
|
| 381 |
+
if args.eval_split > 0:
|
| 382 |
+
split = dataset.train_test_split(test_size=args.eval_split, seed=args.seed)
|
| 383 |
+
train_data = split["train"]
|
| 384 |
+
eval_data = split["test"]
|
| 385 |
+
print(f" Train: {len(train_data)} samples, Eval: {len(eval_data)} samples")
|
| 386 |
+
else:
|
| 387 |
+
train_data = dataset
|
| 388 |
+
eval_data = None
|
| 389 |
+
|
| 390 |
+
print(f" Dataset ready in {time.time() - start:.1f}s")
|
| 391 |
+
|
| 392 |
+
# 3. Configure trainer
|
| 393 |
+
print("\n[3/5] Configuring trainer...")
|
| 394 |
+
|
| 395 |
+
# Enable training mode
|
| 396 |
+
FastVisionModel.for_training(model)
|
| 397 |
+
|
| 398 |
+
# Calculate steps per epoch for logging/eval intervals
|
| 399 |
+
effective_batch = args.batch_size * args.gradient_accumulation
|
| 400 |
+
num_samples = (
|
| 401 |
+
len(train_data) if hasattr(train_data, "__len__") else (args.num_samples or 500)
|
| 402 |
+
)
|
| 403 |
+
steps_per_epoch = num_samples // effective_batch
|
| 404 |
+
|
| 405 |
+
# Determine run name and logging steps
|
| 406 |
+
if args.run_name:
|
| 407 |
+
run_name = args.run_name
|
| 408 |
+
elif args.num_epochs:
|
| 409 |
+
run_name = f"qwen3-vl-sft-{args.num_epochs}ep"
|
| 410 |
+
else:
|
| 411 |
+
run_name = f"qwen3-vl-sft-{args.max_steps}steps"
|
| 412 |
+
|
| 413 |
+
if args.num_epochs:
|
| 414 |
+
logging_steps = max(1, steps_per_epoch // 10) # ~10 logs per epoch
|
| 415 |
+
save_steps = max(1, steps_per_epoch // 4) # ~4 saves per epoch
|
| 416 |
+
else:
|
| 417 |
+
logging_steps = max(1, args.max_steps // 20)
|
| 418 |
+
save_steps = max(1, args.max_steps // 4) # ~4 saves per run
|
| 419 |
+
|
| 420 |
+
# Determine reporting backend
|
| 421 |
+
if args.trackio_space:
|
| 422 |
+
report_to = ["tensorboard", "trackio"]
|
| 423 |
+
else:
|
| 424 |
+
report_to = ["tensorboard"]
|
| 425 |
+
|
| 426 |
+
training_config = SFTConfig(
|
| 427 |
+
output_dir=args.save_local,
|
| 428 |
+
per_device_train_batch_size=args.batch_size,
|
| 429 |
+
gradient_accumulation_steps=args.gradient_accumulation,
|
| 430 |
+
warmup_steps=5, # Per notebook (not warmup_ratio)
|
| 431 |
+
num_train_epochs=args.num_epochs if args.num_epochs else 1,
|
| 432 |
+
max_steps=args.max_steps if args.max_steps else -1, # -1 means use epochs
|
| 433 |
+
learning_rate=args.learning_rate,
|
| 434 |
+
logging_steps=logging_steps,
|
| 435 |
+
optim="adamw_8bit", # Per notebook
|
| 436 |
+
weight_decay=0.001,
|
| 437 |
+
lr_scheduler_type="cosine" if args.num_epochs else "linear",
|
| 438 |
+
seed=args.seed,
|
| 439 |
+
# VLM-specific settings (required for Unsloth)
|
| 440 |
+
remove_unused_columns=False,
|
| 441 |
+
dataset_text_field="",
|
| 442 |
+
dataset_kwargs={"skip_prepare_dataset": True},
|
| 443 |
+
max_length=args.max_seq_length,
|
| 444 |
+
# Logging - always use tensorboard for reliable logs
|
| 445 |
+
report_to=report_to,
|
| 446 |
+
run_name=run_name,
|
| 447 |
+
# Push checkpoints to Hub frequently
|
| 448 |
+
push_to_hub=True,
|
| 449 |
+
hub_model_id=args.output_repo,
|
| 450 |
+
save_steps=save_steps,
|
| 451 |
+
save_total_limit=3, # Keep last 3 checkpoints
|
| 452 |
+
)
|
| 453 |
+
|
| 454 |
+
# Add evaluation config if eval is enabled
|
| 455 |
+
if eval_data:
|
| 456 |
+
if args.num_epochs:
|
| 457 |
+
# For epoch-based training, eval at end of each epoch
|
| 458 |
+
training_config.eval_strategy = "epoch"
|
| 459 |
+
print(" Evaluation enabled: every epoch")
|
| 460 |
+
else:
|
| 461 |
+
training_config.eval_strategy = "steps"
|
| 462 |
+
training_config.eval_steps = max(1, args.max_steps // 5)
|
| 463 |
+
print(f" Evaluation enabled: every {training_config.eval_steps} steps")
|
| 464 |
+
|
| 465 |
+
# Use older 'tokenizer=' parameter (not processing_class) - required for Unsloth VLM
|
| 466 |
+
trainer = SFTTrainer(
|
| 467 |
+
model=model,
|
| 468 |
+
tokenizer=tokenizer, # Full processor, not processor.tokenizer
|
| 469 |
+
data_collator=UnslothVisionDataCollator(
|
| 470 |
+
model,
|
| 471 |
+
tokenizer,
|
| 472 |
+
train_on_responses_only=True,
|
| 473 |
+
instruction_part="<|im_start|>user\n",
|
| 474 |
+
response_part="<|im_start|>assistant\n",
|
| 475 |
+
),
|
| 476 |
+
train_dataset=train_data,
|
| 477 |
+
eval_dataset=eval_data, # None if no eval
|
| 478 |
+
args=training_config,
|
| 479 |
+
)
|
| 480 |
+
|
| 481 |
+
# 4. Train
|
| 482 |
+
print(f"\n[4/5] Training for {duration_str}...")
|
| 483 |
+
if args.num_epochs:
|
| 484 |
+
print(
|
| 485 |
+
f" (~{steps_per_epoch} steps/epoch, {int(steps_per_epoch * args.num_epochs)} total steps)"
|
| 486 |
+
)
|
| 487 |
+
start = time.time()
|
| 488 |
+
|
| 489 |
+
train_result = trainer.train()
|
| 490 |
+
|
| 491 |
+
train_time = time.time() - start
|
| 492 |
+
total_steps = train_result.metrics.get(
|
| 493 |
+
"train_steps", args.max_steps or steps_per_epoch * args.num_epochs
|
| 494 |
+
)
|
| 495 |
+
print(f"\nTraining completed in {train_time / 60:.1f} minutes")
|
| 496 |
+
print(f" Speed: {total_steps / train_time:.2f} steps/s")
|
| 497 |
+
|
| 498 |
+
# Print training metrics
|
| 499 |
+
if train_result.metrics:
|
| 500 |
+
train_loss = train_result.metrics.get("train_loss")
|
| 501 |
+
if train_loss:
|
| 502 |
+
print(f" Final train loss: {train_loss:.4f}")
|
| 503 |
+
|
| 504 |
+
# Print eval results if eval was enabled
|
| 505 |
+
if eval_data:
|
| 506 |
+
print("\nRunning final evaluation...")
|
| 507 |
+
try:
|
| 508 |
+
eval_results = trainer.evaluate()
|
| 509 |
+
eval_loss = eval_results.get("eval_loss")
|
| 510 |
+
if eval_loss:
|
| 511 |
+
print(f" Final eval loss: {eval_loss:.4f}")
|
| 512 |
+
if train_loss:
|
| 513 |
+
ratio = eval_loss / train_loss
|
| 514 |
+
if ratio > 1.5:
|
| 515 |
+
print(
|
| 516 |
+
f" Warning: Eval loss is {ratio:.1f}x train loss - possible overfitting"
|
| 517 |
+
)
|
| 518 |
+
else:
|
| 519 |
+
print(
|
| 520 |
+
f" Eval/train ratio: {ratio:.2f} - model generalizes well"
|
| 521 |
+
)
|
| 522 |
+
except Exception as e:
|
| 523 |
+
print(f" Warning: Final evaluation failed: {e}")
|
| 524 |
+
print(" Continuing to save model...")
|
| 525 |
+
|
| 526 |
+
# 5. Save and push
|
| 527 |
+
print("\n[5/5] Saving model...")
|
| 528 |
+
|
| 529 |
+
if args.merge_model:
|
| 530 |
+
# Merge LoRA weights and push full model
|
| 531 |
+
print("Merging LoRA weights into base model...")
|
| 532 |
+
print(f"\nPushing merged model to {args.output_repo}...")
|
| 533 |
+
model.push_to_hub_merged(
|
| 534 |
+
args.output_repo,
|
| 535 |
+
tokenizer=tokenizer,
|
| 536 |
+
save_method="merged_16bit",
|
| 537 |
+
)
|
| 538 |
+
print(f"Merged model available at: https://huggingface.co/{args.output_repo}")
|
| 539 |
+
else:
|
| 540 |
+
# Save adapter only (smaller, requires base model to use)
|
| 541 |
+
model.save_pretrained(args.save_local)
|
| 542 |
+
tokenizer.save_pretrained(args.save_local)
|
| 543 |
+
print(f"Saved locally to {args.save_local}/")
|
| 544 |
+
|
| 545 |
+
print(f"\nPushing adapter to {args.output_repo}...")
|
| 546 |
+
model.push_to_hub(args.output_repo, tokenizer=tokenizer)
|
| 547 |
+
print(f"Adapter available at: https://huggingface.co/{args.output_repo}")
|
| 548 |
+
|
| 549 |
+
# Update model card metadata with dataset info
|
| 550 |
+
from huggingface_hub import metadata_update
|
| 551 |
+
|
| 552 |
+
metadata_update(args.output_repo, {"datasets": [args.dataset]}, overwrite=True)
|
| 553 |
+
print(f" Model card updated with dataset: {args.dataset}")
|
| 554 |
+
|
| 555 |
+
print("\n" + "=" * 70)
|
| 556 |
+
print("Done!")
|
| 557 |
+
print("=" * 70)
|
| 558 |
+
|
| 559 |
+
|
| 560 |
+
if __name__ == "__main__":
|
| 561 |
+
# Show example usage if no arguments
|
| 562 |
+
if len(sys.argv) == 1:
|
| 563 |
+
print("=" * 70)
|
| 564 |
+
print("Qwen3-VL-8B Fine-tuning with Unsloth")
|
| 565 |
+
print("=" * 70)
|
| 566 |
+
print("\nFine-tune Vision-Language Models with optional train/eval split.")
|
| 567 |
+
print("\nFeatures:")
|
| 568 |
+
print(" - ~60% less VRAM with Unsloth optimizations")
|
| 569 |
+
print(" - 2x faster training vs standard methods")
|
| 570 |
+
print(" - Epoch-based or step-based training")
|
| 571 |
+
print(" - Optional evaluation to detect overfitting")
|
| 572 |
+
print(" - Trackio integration for monitoring")
|
| 573 |
+
print("\nEpoch-based training (recommended for full datasets):")
|
| 574 |
+
print("\n uv run sft-qwen3-vl.py \\")
|
| 575 |
+
print(" --num-epochs 1 \\")
|
| 576 |
+
print(" --eval-split 0.2 \\")
|
| 577 |
+
print(" --output-repo your-username/vlm-finetuned")
|
| 578 |
+
print("\nHF Jobs example (1 epoch with eval):")
|
| 579 |
+
print("\n hf jobs uv run \\")
|
| 580 |
+
print(
|
| 581 |
+
" https://huggingface.co/datasets/unsloth/jobs/raw/main/sft-qwen3-vl.py \\"
|
| 582 |
+
)
|
| 583 |
+
print(" --flavor a100-large --secrets HF_TOKEN --timeout 4h \\")
|
| 584 |
+
print(
|
| 585 |
+
" -- --num-epochs 1 --eval-split 0.2 --output-repo your-username/vlm-finetuned"
|
| 586 |
+
)
|
| 587 |
+
print("\nStep-based training (for streaming or quick tests):")
|
| 588 |
+
print("\n uv run sft-qwen3-vl.py \\")
|
| 589 |
+
print(" --streaming \\")
|
| 590 |
+
print(" --max-steps 500 \\")
|
| 591 |
+
print(" --output-repo your-username/vlm-finetuned")
|
| 592 |
+
print("\nFor full help: uv run sft-qwen3-vl.py --help")
|
| 593 |
+
print("=" * 70)
|
| 594 |
+
sys.exit(0)
|
| 595 |
+
|
| 596 |
+
main()
|