--- language: - en task_categories: - text-retrieval task_ids: - document-retrieval config_names: - corpus tags: - text-retrieval dataset_info: - config_name: qrels features: - name: query-id dtype: string - name: corpus-id dtype: string - name: type dtype: string splits: - name: passage num_bytes: 598330 num_examples: 7150 - name: document num_bytes: 485624 num_examples: 6050 - config_name: queries features: - name: _id dtype: string - name: text dtype: string splits: - name: test num_bytes: 4781 num_examples: 76 - config_name: corpus features: - name: _id dtype: string - name: title dtype: string - name: headings dtype: string - name: text dtype: string splits: - name: pass_core num_bytes: 2712089 num_examples: 7126 - name: pass_10k num_bytes: 1065541 num_examples: 2874 - name: pass_100k num_bytes: 33382351 num_examples: 90000 - name: pass_1M num_bytes: 333466010 num_examples: 900000 - name: pass_10M num_bytes: 3332841963 num_examples: 9000000 - name: pass_100M num_bytes: 33331696935 num_examples: 90000000 - name: doc_core num_bytes: 91711400 num_examples: 6032 - name: doc_10k num_bytes: 38457420 num_examples: 3968 - name: doc_100k num_bytes: 883536440 num_examples: 90000 - name: doc_1M num_bytes: 8850694962 num_examples: 900000 - name: doc_10M num_bytes: 88689338934 num_examples: 9000000 configs: - config_name: qrels data_files: - split: passage path: qrels/passage.jsonl - split: document path: qrels/document.jsonl - config_name: queries data_files: - split: test path: queries.jsonl - config_name: corpus data_files: - split: pass_core path: passage/corpus_core.jsonl - split: pass_10k path: passage/corpus_10000.jsonl - split: pass_100k path: passage/corpus_100000.jsonl - split: pass_1M path: passage/corpus_1000000.jsonl - split: pass_10M path: passage/corpus_10000000_*.jsonl - split: pass_100M path: passage/corpus_100000000_*.jsonl - split: doc_core path: document/corpus_core.jsonl - split: doc_10k path: document/corpus_10000.jsonl - split: doc_100k path: document/corpus_100000.jsonl - split: doc_1M path: document/corpus_1000000.jsonl - split: doc_10M path: document/corpus_10000000_*.jsonl ---

CoRE: Controlled Retrieval Evaluation Dataset

Motivation | Dataset Overview | Dataset Construction | Dataset Structure | Qrels Format | Evaluation | Citation | Links | Contact

**CoRE** (Controlled Retrieval Evaluation) is a benchmark dataset designed for the rigorous evaluation of embedding compression techniques in information retrieval. ## 🔍 Motivation Embedding compression is essential for scaling modern retrieval systems, but its effects are often evaluated under overly simplistic conditions. CoRE addresses this by offering a collection of corpora with: * Multiple document lengths (passage and document) and sizes (10k to 100M) * Fixed number of **relevant** and **distractor** documents per query * Realistic evaluation grounded in TREC DL human relevance labels This evaluation framework goes beyond, e.g., the benchmark used in the paper "The Curse of Dense Low-Dimensional Information Retrieval for Large Index Sizes" from [Reimers and Gurevych (2021)](https://doi.org/10.18653/v1/2021.acl-short.77), which disregards different document lengths and employs a less advanced random sampling, hence creating a less realistic experimental setup. ## 📦 Dataset Overview CoRE builds on MS MARCO v2 and introduces high-quality distractors using pooled system runs from [TREC 2023 Deep Learning Track](https://microsoft.github.io/msmarco/TREC-Deep-Learning.html). We ensure consistent query difficulty across different corpus sizes and document types. This overcomes the limitations of randomly sampled corpora, which can lead to trivial retrieval tasks, as no distractors are present in smaller datasets. | Document Type | # Queries | Corpus Sizes | | ------------- | --------- | ------------------------ | | Passage | 65 | 10k, 100k, 1M, 10M, 100M | | Document | 55 | 10k, 100k, 1M, 10M | For each query: * **10 relevant documents** * **100 high-quality distractors**, selected via Reciprocal Rank Fusion (RRF) from top TREC system runs (bottom 20% of runs excluded) ## 🏗 Dataset Construction To avoid trivializing the retrieval task when reducing corpus size, CoRE follows the intelligent **corpus subsampling strategy** proposed by [Fröbe et al. (2025)](https://doi.org/10.1007/978-3-031-88708-6_29). This method is used to mine distractors from pooled ranking lists. These distractors are then included in all corpora of CoRE, ensuring a fixed *query difficulty*—unlike naive random sampling, where the number of distractors would decrease with corpus size. Steps for both passage and document retrieval: 1. Start from MS MARCO v2 annotations 2. For each query: * Retain 10 relevant documents * Mine 100 distractors from RRF-fused rankings of top TREC 2023 DL submissions 3. Construct multiple corpus scales by aggregating relevant documents and distractors with randomly sampled filler documents ## 🧱 Dataset Structure The dataset consists of three subsets: `queries`, `qrels`, and `corpus`. * **queries**: contains only one split (`test`) * **qrels**: contains two splits: `passage` and `document` * **corpus**: contains 11 splits, detailed below:
Passage Corpus Splits
Split# Documents
pass_core~7,130
pass_10k~2,870
pass_100k90,000
pass_1M900,000
pass_10M9,000,000
pass_100M90,000,000
Document Corpus Splits
Split# Documents
doc_core~6,030
doc_10k~3,970
doc_100k90,000
doc_1M900,000
doc_10M9,000,000
> Note: The `_core` splits contain only relevant and distractor documents. All other splits are topped up with randomly sampled documents to reach the target size. ## 🏷 Qrels Format The `qrels` files in CoRE differ from typical IR datasets. Instead of the standard relevance grading (e.g., 0, 1, 2), CoRE uses two distinct labels: * `relevant` (10 documents per query) * `distractor` (100 documents per query) This enables focused evaluation of model sensitivity to compression under tightly controlled relevance and distractor distributions. ## 📊 Evaluation ```python from datasets import load_dataset # Load queries queries = load_dataset("PaDaS-Lab/CoRE", name="queries", split="test") # Load relevance judgments qrels = load_dataset("PaDaS-Lab/CoRE", name="qrels", split="passage") # Load a 100k-scale corpus for passage retrieval corpus = load_dataset("PaDaS-Lab/CoRE", name="corpus", split="pass_100k") ``` ## 📜 Citation If you use CoRE in your research, please cite: ```bibtex @misc{caspari2025corect, title={CoRECT: A Framework for Evaluating Embedding Compression Techniques at Scale}, author={L. Caspari and M. Dinzinger and K. Ghosh Dastidar and C. Fellicious and J. Mitrović and M. Granitzer}, year={2025}, eprint={2510.19340}, archivePrefix={arXiv}, primaryClass={cs.IR}, url={https://arxiv.org/abs/2510.19340}, } ``` ## 🔗 Links * [Paper](https://arxiv.org/pdf/2510.19340) * [MS MARCO](https://microsoft.github.io/msmarco/) * [TREC](https://trec.nist.gov/) ## 📬 Contact For questions or collaboration opportunities, contact us at `michael.dinzinger@uni-passau.de`.