Upload pretrain_unified_navit.py with huggingface_hub
Browse files- pretrain_unified_navit.py +705 -0
pretrain_unified_navit.py
ADDED
|
@@ -0,0 +1,705 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 Bytedance Ltd. and/or its affiliates.
|
| 2 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
+
|
| 4 |
+
import functools
|
| 5 |
+
import os
|
| 6 |
+
import wandb
|
| 7 |
+
import yaml
|
| 8 |
+
from copy import deepcopy
|
| 9 |
+
from dataclasses import dataclass, field
|
| 10 |
+
from time import time
|
| 11 |
+
|
| 12 |
+
import torch
|
| 13 |
+
import torch.distributed as dist
|
| 14 |
+
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
|
| 15 |
+
CheckpointImpl,
|
| 16 |
+
apply_activation_checkpointing,
|
| 17 |
+
checkpoint_wrapper,
|
| 18 |
+
)
|
| 19 |
+
from torch.utils.data import DataLoader
|
| 20 |
+
from transformers import HfArgumentParser, set_seed
|
| 21 |
+
from transformers.optimization import (
|
| 22 |
+
get_constant_schedule_with_warmup,
|
| 23 |
+
get_cosine_with_min_lr_schedule_with_warmup,
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
from data.dataset_base import DataConfig, PackedDataset, collate_wrapper
|
| 27 |
+
from data.data_utils import add_special_tokens
|
| 28 |
+
from modeling.autoencoder import load_ae
|
| 29 |
+
from modeling.bagel import (
|
| 30 |
+
BagelConfig, Bagel, Qwen2Config, Qwen2ForCausalLM, SiglipVisionConfig, SiglipVisionModel
|
| 31 |
+
)
|
| 32 |
+
from modeling.qwen2 import Qwen2Tokenizer
|
| 33 |
+
from train.train_utils import create_logger, get_latest_ckpt
|
| 34 |
+
from train.fsdp_utils import (
|
| 35 |
+
FSDPCheckpoint, FSDPConfig, grad_checkpoint_check_fn, fsdp_wrapper,
|
| 36 |
+
fsdp_ema_setup, fsdp_ema_update,
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
@dataclass
|
| 41 |
+
class ModelArguments:
|
| 42 |
+
model_path: str = field(
|
| 43 |
+
default="/mnt/beegfs/Workspace/Models/BAGEL-7B-MoT",
|
| 44 |
+
metadata={"help": "Path of the pretrained BAGEL model."}
|
| 45 |
+
)
|
| 46 |
+
llm_path: str = field(
|
| 47 |
+
default="/mnt/beegfs/Workspace/Models/Qwen2.5-0.5B-Instruct/",
|
| 48 |
+
metadata={"help": "Path or HuggingFace repo ID of the pretrained Qwen2-style language model."}
|
| 49 |
+
)
|
| 50 |
+
llm_qk_norm: bool = field(
|
| 51 |
+
default=True,
|
| 52 |
+
metadata={"help": "Enable QK LayerNorm (qk_norm) inside the attention blocks."}
|
| 53 |
+
)
|
| 54 |
+
tie_word_embeddings: bool = field(
|
| 55 |
+
default=False,
|
| 56 |
+
metadata={"help": "Share input and output word embeddings (tied embeddings)."}
|
| 57 |
+
)
|
| 58 |
+
layer_module: str = field(
|
| 59 |
+
default="Qwen2MoTDecoderLayer",
|
| 60 |
+
metadata={"help": "Python class name of the decoder layer to instantiate."}
|
| 61 |
+
)
|
| 62 |
+
vae_path: str = field(
|
| 63 |
+
default="/mnt/beegfs/Workspace/Models/vae-flux/ae.safetensors",
|
| 64 |
+
metadata={"help": "Path to the pretrained VAE checkpoint for latent-space image generation."}
|
| 65 |
+
)
|
| 66 |
+
vit_path: str = field(
|
| 67 |
+
default="/mnt/beegfs/Workspace/Models/siglip-so400m-14-980-flash-attn2-navit/",
|
| 68 |
+
metadata={"help": "Path or repo ID of the SigLIP Vision Transformer used for image understanding."}
|
| 69 |
+
)
|
| 70 |
+
max_latent_size: int = field(
|
| 71 |
+
default=32,
|
| 72 |
+
metadata={"help": "Maximum latent grid size (patches per side) for the VAE latent tensor."}
|
| 73 |
+
)
|
| 74 |
+
latent_patch_size: int = field(
|
| 75 |
+
default=2,
|
| 76 |
+
metadata={"help": "Spatial size (in VAE pixels) covered by each latent patch."}
|
| 77 |
+
)
|
| 78 |
+
vit_patch_size: int = field(
|
| 79 |
+
default=14,
|
| 80 |
+
metadata={"help": "Patch size (pixels) for the Vision Transformer encoder."}
|
| 81 |
+
)
|
| 82 |
+
vit_max_num_patch_per_side: int = field(
|
| 83 |
+
default=70,
|
| 84 |
+
metadata={"help": "Maximum number of ViT patches along one image side after cropping / resize."}
|
| 85 |
+
)
|
| 86 |
+
connector_act: str = field(
|
| 87 |
+
default="gelu_pytorch_tanh",
|
| 88 |
+
metadata={"help": "Activation function used in the latent-to-text connector MLP."}
|
| 89 |
+
)
|
| 90 |
+
interpolate_pos: bool = field(
|
| 91 |
+
default=False,
|
| 92 |
+
metadata={"help": "Interpolate positional embeddings when image resolution differs from pre-training."}
|
| 93 |
+
)
|
| 94 |
+
vit_select_layer: int = field(
|
| 95 |
+
default=-2,
|
| 96 |
+
metadata={"help": "Which hidden layer of the ViT to take as the visual feature (negative = from the end)."}
|
| 97 |
+
)
|
| 98 |
+
vit_rope: bool = field(
|
| 99 |
+
default=False,
|
| 100 |
+
metadata={"help": "Replace ViT positional encodings with RoPE."}
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
text_cond_dropout_prob: float = field(
|
| 104 |
+
default=0.1,
|
| 105 |
+
metadata={"help": "Probability of dropping text embeddings during training."}
|
| 106 |
+
)
|
| 107 |
+
vae_cond_dropout_prob: float = field(
|
| 108 |
+
default=0.3,
|
| 109 |
+
metadata={"help": "Probability of dropping VAE latent inputs during training."}
|
| 110 |
+
)
|
| 111 |
+
vit_cond_dropout_prob: float = field(
|
| 112 |
+
default=0.3,
|
| 113 |
+
metadata={"help": "Probability of dropping ViT visual features during training."}
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
@dataclass
|
| 118 |
+
class DataArguments:
|
| 119 |
+
dataset_config_file: str = field(
|
| 120 |
+
default="data/configs/example.yaml",
|
| 121 |
+
metadata={"help": "YAML file specifying dataset groups, weights, and preprocessing rules."}
|
| 122 |
+
)
|
| 123 |
+
prefetch_factor: int = field(
|
| 124 |
+
default=2,
|
| 125 |
+
metadata={"help": "How many batches each DataLoader worker pre-loads in advance."}
|
| 126 |
+
)
|
| 127 |
+
num_workers: int = field(
|
| 128 |
+
default=4,
|
| 129 |
+
metadata={"help": "Number of background workers for the PyTorch DataLoader."}
|
| 130 |
+
)
|
| 131 |
+
max_num_tokens_per_sample: int = field(
|
| 132 |
+
default=16384,
|
| 133 |
+
metadata={"help": "Maximum tokens allowed in one raw sample; longer samples are skipped."}
|
| 134 |
+
)
|
| 135 |
+
max_num_tokens: int = field(
|
| 136 |
+
default=36864,
|
| 137 |
+
metadata={"help": "Hard limit on tokens in a packed batch; flush if adding a sample would exceed it."}
|
| 138 |
+
)
|
| 139 |
+
prefer_buffer_before: int = field(
|
| 140 |
+
default=16384,
|
| 141 |
+
metadata={"help": "While batch length is below this, pop from the overflow buffer before new sampling."}
|
| 142 |
+
)
|
| 143 |
+
max_buffer_size: int = field(
|
| 144 |
+
default=50,
|
| 145 |
+
metadata={"help": "Maximum number of oversized samples kept in the overflow buffer."}
|
| 146 |
+
)
|
| 147 |
+
data_seed: int = field(
|
| 148 |
+
default=42,
|
| 149 |
+
metadata={"help": "Seed used when shuffling / sampling data shards to ensure reproducibility."}
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
@dataclass
|
| 154 |
+
class TrainingArguments:
|
| 155 |
+
# --- modality switches ---
|
| 156 |
+
visual_gen: bool = field(
|
| 157 |
+
default=True,
|
| 158 |
+
metadata={"help": "Train image generation branch."}
|
| 159 |
+
)
|
| 160 |
+
visual_und: bool = field(
|
| 161 |
+
default=False,
|
| 162 |
+
metadata={"help": "Train image understanding branch."}
|
| 163 |
+
)
|
| 164 |
+
|
| 165 |
+
# --- bookkeeping & logging ---
|
| 166 |
+
results_dir: str = field(
|
| 167 |
+
default="results",
|
| 168 |
+
metadata={"help": "Root directory for logs."}
|
| 169 |
+
)
|
| 170 |
+
checkpoint_dir: str = field(
|
| 171 |
+
default="results/checkpoints",
|
| 172 |
+
metadata={"help": "Root directory for model checkpoints."}
|
| 173 |
+
)
|
| 174 |
+
wandb_project: str = field(
|
| 175 |
+
default="bagel",
|
| 176 |
+
metadata={"help": "Weights & Biases project name."}
|
| 177 |
+
)
|
| 178 |
+
wandb_name: str = field(
|
| 179 |
+
default="run",
|
| 180 |
+
metadata={"help": "Name shown in the Weights & Biases UI for this run."}
|
| 181 |
+
)
|
| 182 |
+
wandb_runid: str = field(
|
| 183 |
+
default="0",
|
| 184 |
+
metadata={"help": "Unique identifier to resume a previous W&B run, if desired."}
|
| 185 |
+
)
|
| 186 |
+
wandb_resume: str = field(
|
| 187 |
+
default="allow",
|
| 188 |
+
metadata={"help": "W&B resume mode: 'allow', 'must', or 'never'."}
|
| 189 |
+
)
|
| 190 |
+
wandb_offline: bool = field(
|
| 191 |
+
default=False,
|
| 192 |
+
metadata={"help": "Run W&B in offline mode (logs locally, sync later)."}
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
# --- reproducibility & resume ---
|
| 196 |
+
global_seed: int = field(
|
| 197 |
+
default=4396,
|
| 198 |
+
metadata={"help": "Base random seed; actual seed is offset by rank for DDP."}
|
| 199 |
+
)
|
| 200 |
+
auto_resume: bool = field(
|
| 201 |
+
default=False,
|
| 202 |
+
metadata={"help": "Automatically pick up the latest checkpoint found in checkpoint_dir."}
|
| 203 |
+
)
|
| 204 |
+
resume_from: str = field(
|
| 205 |
+
default=None,
|
| 206 |
+
metadata={"help": "Explicit checkpoint path to resume from (overrides auto_resume)." }
|
| 207 |
+
)
|
| 208 |
+
resume_model_only: bool = field(
|
| 209 |
+
default=False,
|
| 210 |
+
metadata={"help": "Load only model weights, ignoring optimizer/scheduler states."}
|
| 211 |
+
)
|
| 212 |
+
finetune_from_ema: bool = field(
|
| 213 |
+
default=False,
|
| 214 |
+
metadata={"help": "When resume_model_only=True, load the EMA (exponential moving average) weights instead of raw weights."}
|
| 215 |
+
)
|
| 216 |
+
finetune_from_hf: bool = field(
|
| 217 |
+
default=False,
|
| 218 |
+
metadata={"help": "Whether finetune from HugginFace model."}
|
| 219 |
+
)
|
| 220 |
+
|
| 221 |
+
# --- reporting frequency ---
|
| 222 |
+
log_every: int = field(
|
| 223 |
+
default=10,
|
| 224 |
+
metadata={"help": "Print / log every N training steps."}
|
| 225 |
+
)
|
| 226 |
+
save_every: int = field(
|
| 227 |
+
default=2000,
|
| 228 |
+
metadata={"help": "Save a checkpoint every N training steps."}
|
| 229 |
+
)
|
| 230 |
+
total_steps: int = field(
|
| 231 |
+
default=500_000,
|
| 232 |
+
metadata={"help": "Total number of optimizer steps to train for."}
|
| 233 |
+
)
|
| 234 |
+
|
| 235 |
+
# --- optimization & scheduler ---
|
| 236 |
+
warmup_steps: int = field(
|
| 237 |
+
default=2000,
|
| 238 |
+
metadata={"help": "Linear warm-up steps before applying the main LR schedule."}
|
| 239 |
+
)
|
| 240 |
+
lr_scheduler: str = field(
|
| 241 |
+
default="constant",
|
| 242 |
+
metadata={"help": "Type of LR schedule: 'constant' or 'cosine'."}
|
| 243 |
+
)
|
| 244 |
+
lr: float = field(
|
| 245 |
+
default=1e-4,
|
| 246 |
+
metadata={"help": "Peak learning rate after warm-up."}
|
| 247 |
+
)
|
| 248 |
+
min_lr: float = field(
|
| 249 |
+
default=1e-7,
|
| 250 |
+
metadata={"help": "Minimum learning rate for cosine schedule (ignored for constant)."}
|
| 251 |
+
)
|
| 252 |
+
beta1: float = field(
|
| 253 |
+
default=0.9,
|
| 254 |
+
metadata={"help": "AdamW β₁ coefficient."}
|
| 255 |
+
)
|
| 256 |
+
beta2: float = field(
|
| 257 |
+
default=0.95,
|
| 258 |
+
metadata={"help": "AdamW β₂ coefficient."}
|
| 259 |
+
)
|
| 260 |
+
eps: float = field(
|
| 261 |
+
default=1e-15,
|
| 262 |
+
metadata={"help": "AdamW ε for numerical stability."}
|
| 263 |
+
)
|
| 264 |
+
ema: float = field(
|
| 265 |
+
default=0.9999,
|
| 266 |
+
metadata={"help": "Decay rate for the exponential moving average of model weights."}
|
| 267 |
+
)
|
| 268 |
+
max_grad_norm: int = field(
|
| 269 |
+
default=1.0,
|
| 270 |
+
metadata={"help": "Gradient clipping threshold (L2 norm)."}
|
| 271 |
+
)
|
| 272 |
+
timestep_shift: float = field(
|
| 273 |
+
default=1.0,
|
| 274 |
+
metadata={"help": "Shift applied to diffusion timestep indices (for latent prediction)."}
|
| 275 |
+
)
|
| 276 |
+
mse_weight: float = field(
|
| 277 |
+
default=1.0,
|
| 278 |
+
metadata={"help": "Scaling factor for the image-reconstruction MSE loss term."}
|
| 279 |
+
)
|
| 280 |
+
ce_weight: float = field(
|
| 281 |
+
default=1.0,
|
| 282 |
+
metadata={"help": "Scaling factor for the language cross-entropy loss term."}
|
| 283 |
+
)
|
| 284 |
+
ce_loss_reweighting: bool = field(
|
| 285 |
+
default=False,
|
| 286 |
+
metadata={"help": "Reweight CE loss by token importance (provided via ce_loss_weights)."}
|
| 287 |
+
)
|
| 288 |
+
expected_num_tokens: int = field(
|
| 289 |
+
default=32768,
|
| 290 |
+
metadata={"help": "Soft target token count; yield the batch once it reaches or exceeds this size."}
|
| 291 |
+
)
|
| 292 |
+
|
| 293 |
+
# --- distributed training / FSDP ---
|
| 294 |
+
num_replicate: int = field(
|
| 295 |
+
default=1,
|
| 296 |
+
metadata={"help": "Number of model replicas per GPU rank for tensor parallelism."}
|
| 297 |
+
)
|
| 298 |
+
num_shard: int = field(
|
| 299 |
+
default=8,
|
| 300 |
+
metadata={"help": "Number of parameter shards when using FSDP HYBRID_SHARD."}
|
| 301 |
+
)
|
| 302 |
+
sharding_strategy: str = field(
|
| 303 |
+
default="HYBRID_SHARD",
|
| 304 |
+
metadata={"help": "FSDP sharding strategy: FULL_SHARD, SHARD_GRAD_OP, HYBRID_SHARD, etc."}
|
| 305 |
+
)
|
| 306 |
+
backward_prefetch: str = field(
|
| 307 |
+
default="BACKWARD_PRE",
|
| 308 |
+
metadata={"help": "FSDP backward prefetch strategy (BACKWARD_PRE or NO_PREFETCH)."}
|
| 309 |
+
)
|
| 310 |
+
cpu_offload: bool = field(
|
| 311 |
+
default=False,
|
| 312 |
+
metadata={"help": "Enable FSDP parameter offload to CPU."}
|
| 313 |
+
)
|
| 314 |
+
|
| 315 |
+
# --- module freezing ---
|
| 316 |
+
freeze_llm: bool = field(
|
| 317 |
+
default=False,
|
| 318 |
+
metadata={"help": "Keep language-model weights fixed (no gradient updates)."}
|
| 319 |
+
)
|
| 320 |
+
freeze_vit: bool = field(
|
| 321 |
+
default=False,
|
| 322 |
+
metadata={"help": "Keep ViT weights fixed during training."}
|
| 323 |
+
)
|
| 324 |
+
freeze_vae: bool = field(
|
| 325 |
+
default=True,
|
| 326 |
+
metadata={"help": "Keep VAE weights fixed; only predict latents, don’t fine-tune encoder/decoder."}
|
| 327 |
+
)
|
| 328 |
+
freeze_und: bool = field(
|
| 329 |
+
default=False,
|
| 330 |
+
metadata={"help": "Freeze the visual understanding connector layers."}
|
| 331 |
+
)
|
| 332 |
+
copy_init_moe: bool = field(
|
| 333 |
+
default=True,
|
| 334 |
+
metadata={"help": "Duplicate initial MoE experts so each has identical initialisation."}
|
| 335 |
+
)
|
| 336 |
+
use_flex: bool = field(
|
| 337 |
+
default=False,
|
| 338 |
+
metadata={"help": "Enable FLEX (flash-ext friendly) packing algorithm for sequence data."}
|
| 339 |
+
)
|
| 340 |
+
|
| 341 |
+
|
| 342 |
+
def main():
|
| 343 |
+
assert torch.cuda.is_available()
|
| 344 |
+
dist.init_process_group("nccl")
|
| 345 |
+
device = dist.get_rank() % torch.cuda.device_count()
|
| 346 |
+
torch.cuda.set_device(device)
|
| 347 |
+
parser = HfArgumentParser((ModelArguments, DataArguments, TrainingArguments))
|
| 348 |
+
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
| 349 |
+
|
| 350 |
+
# Setup logging:
|
| 351 |
+
if dist.get_rank() == 0:
|
| 352 |
+
os.makedirs(training_args.results_dir, exist_ok=True)
|
| 353 |
+
os.makedirs(training_args.checkpoint_dir, exist_ok=True)
|
| 354 |
+
logger = create_logger(training_args.results_dir, dist.get_rank())
|
| 355 |
+
wandb.init(
|
| 356 |
+
project=training_args.wandb_project,
|
| 357 |
+
id=f"{training_args.wandb_name}-run{training_args.wandb_runid}",
|
| 358 |
+
name=training_args.wandb_name,
|
| 359 |
+
resume=training_args.wandb_resume,
|
| 360 |
+
mode="offline" if training_args.wandb_offline else "online"
|
| 361 |
+
)
|
| 362 |
+
# wandb.config.update(training_args)
|
| 363 |
+
# wandb.config.update(model_args)
|
| 364 |
+
# wandb.config.update(data_args)
|
| 365 |
+
wandb.config.update(training_args, allow_val_change=True)
|
| 366 |
+
wandb.config.update(model_args, allow_val_change=True)
|
| 367 |
+
wandb.config.update(data_args, allow_val_change=True)
|
| 368 |
+
|
| 369 |
+
else:
|
| 370 |
+
logger = create_logger(None, dist.get_rank())
|
| 371 |
+
dist.barrier()
|
| 372 |
+
logger.info(f'Training arguments {training_args}')
|
| 373 |
+
logger.info(f'Model arguments {model_args}')
|
| 374 |
+
logger.info(f'Data arguments {data_args}')
|
| 375 |
+
|
| 376 |
+
# prepare auto resume logic:
|
| 377 |
+
if training_args.auto_resume:
|
| 378 |
+
resume_from = get_latest_ckpt(training_args.checkpoint_dir)
|
| 379 |
+
if resume_from is None:
|
| 380 |
+
resume_from = training_args.resume_from
|
| 381 |
+
resume_model_only = training_args.resume_model_only
|
| 382 |
+
if resume_model_only:
|
| 383 |
+
finetune_from_ema = training_args.finetune_from_ema
|
| 384 |
+
else:
|
| 385 |
+
finetune_from_ema = False
|
| 386 |
+
else:
|
| 387 |
+
resume_model_only = False
|
| 388 |
+
finetune_from_ema = False
|
| 389 |
+
else:
|
| 390 |
+
resume_from = training_args.resume_from
|
| 391 |
+
resume_model_only = training_args.resume_model_only
|
| 392 |
+
if resume_model_only:
|
| 393 |
+
finetune_from_ema = training_args.finetune_from_ema
|
| 394 |
+
else:
|
| 395 |
+
finetune_from_ema = False
|
| 396 |
+
|
| 397 |
+
# Set seed:
|
| 398 |
+
seed = training_args.global_seed * dist.get_world_size() + dist.get_rank()
|
| 399 |
+
set_seed(seed)
|
| 400 |
+
|
| 401 |
+
# Setup model:
|
| 402 |
+
if training_args.finetune_from_hf:
|
| 403 |
+
llm_config = Qwen2Config.from_json_file(os.path.join(model_args.model_path, "llm_config.json"))
|
| 404 |
+
else:
|
| 405 |
+
llm_config = Qwen2Config.from_pretrained(model_args.llm_path)
|
| 406 |
+
llm_config.layer_module = model_args.layer_module
|
| 407 |
+
llm_config.qk_norm = model_args.llm_qk_norm
|
| 408 |
+
llm_config.tie_word_embeddings = model_args.tie_word_embeddings
|
| 409 |
+
llm_config.freeze_und = training_args.freeze_und
|
| 410 |
+
if training_args.finetune_from_hf:
|
| 411 |
+
language_model = Qwen2ForCausalLM(llm_config)
|
| 412 |
+
else:
|
| 413 |
+
language_model = Qwen2ForCausalLM.from_pretrained(model_args.llm_path, config=llm_config)
|
| 414 |
+
if training_args.copy_init_moe:
|
| 415 |
+
language_model.init_moe()
|
| 416 |
+
|
| 417 |
+
if training_args.visual_und:
|
| 418 |
+
if training_args.finetune_from_hf:
|
| 419 |
+
vit_config = SiglipVisionConfig.from_json_file(os.path.join(model_args.model_path, "vit_config.json"))
|
| 420 |
+
else:
|
| 421 |
+
vit_config = SiglipVisionConfig.from_pretrained(model_args.vit_path)
|
| 422 |
+
vit_config.num_hidden_layers = vit_config.num_hidden_layers + 1 + model_args.vit_select_layer
|
| 423 |
+
vit_config.rope = model_args.vit_rope
|
| 424 |
+
if training_args.finetune_from_hf:
|
| 425 |
+
vit_model = SiglipVisionModel(vit_config)
|
| 426 |
+
else:
|
| 427 |
+
vit_model = SiglipVisionModel.from_pretrained(model_args.vit_path, config=vit_config)
|
| 428 |
+
|
| 429 |
+
if training_args.visual_gen:
|
| 430 |
+
vae_model, vae_config = load_ae(
|
| 431 |
+
local_path=os.path.join(model_args.model_path, "ae.safetensors")
|
| 432 |
+
if training_args.finetune_from_hf else model_args.vae_path
|
| 433 |
+
)
|
| 434 |
+
|
| 435 |
+
config = BagelConfig(
|
| 436 |
+
visual_gen=training_args.visual_gen,
|
| 437 |
+
visual_und=training_args.visual_und,
|
| 438 |
+
llm_config=llm_config,
|
| 439 |
+
vit_config=vit_config if training_args.visual_und else None,
|
| 440 |
+
vae_config=vae_config if training_args.visual_gen else None,
|
| 441 |
+
latent_patch_size=model_args.latent_patch_size,
|
| 442 |
+
max_latent_size=model_args.max_latent_size,
|
| 443 |
+
vit_max_num_patch_per_side=model_args.vit_max_num_patch_per_side,
|
| 444 |
+
connector_act=model_args.connector_act,
|
| 445 |
+
interpolate_pos=model_args.interpolate_pos,
|
| 446 |
+
timestep_shift=training_args.timestep_shift,
|
| 447 |
+
)
|
| 448 |
+
model = Bagel(
|
| 449 |
+
language_model,
|
| 450 |
+
vit_model if training_args.visual_und else None,
|
| 451 |
+
config
|
| 452 |
+
)
|
| 453 |
+
|
| 454 |
+
if training_args.visual_und:
|
| 455 |
+
model.vit_model.vision_model.embeddings.convert_conv2d_to_linear(vit_config)
|
| 456 |
+
|
| 457 |
+
# Setup tokenizer for model:
|
| 458 |
+
tokenizer = Qwen2Tokenizer.from_pretrained(model_args.model_path if training_args.finetune_from_hf else model_args.llm_path)
|
| 459 |
+
tokenizer, new_token_ids, num_new_tokens = add_special_tokens(tokenizer)
|
| 460 |
+
if num_new_tokens > 0:
|
| 461 |
+
model.language_model.resize_token_embeddings(len(tokenizer))
|
| 462 |
+
model.config.llm_config.vocab_size = len(tokenizer)
|
| 463 |
+
model.language_model.config.vocab_size = len(tokenizer)
|
| 464 |
+
|
| 465 |
+
# maybe freeze something:
|
| 466 |
+
if training_args.freeze_vae and training_args.visual_gen:
|
| 467 |
+
for param in vae_model.parameters():
|
| 468 |
+
param.requires_grad = False
|
| 469 |
+
if training_args.freeze_llm:
|
| 470 |
+
model.language_model.eval()
|
| 471 |
+
for param in model.language_model.parameters():
|
| 472 |
+
param.requires_grad = False
|
| 473 |
+
if training_args.freeze_vit and training_args.visual_und:
|
| 474 |
+
model.vit_model.eval()
|
| 475 |
+
for param in model.vit_model.parameters():
|
| 476 |
+
param.requires_grad = False
|
| 477 |
+
|
| 478 |
+
# Setup FSDP and load pretrained model:
|
| 479 |
+
fsdp_config = FSDPConfig(
|
| 480 |
+
sharding_strategy=training_args.sharding_strategy,
|
| 481 |
+
backward_prefetch=training_args.backward_prefetch,
|
| 482 |
+
cpu_offload=training_args.cpu_offload,
|
| 483 |
+
num_replicate=training_args.num_replicate,
|
| 484 |
+
num_shard=training_args.num_shard,
|
| 485 |
+
)
|
| 486 |
+
ema_model = deepcopy(model)
|
| 487 |
+
model, ema_model = FSDPCheckpoint.try_load_ckpt(
|
| 488 |
+
resume_from, logger, model, ema_model, resume_from_ema=finetune_from_ema
|
| 489 |
+
)
|
| 490 |
+
ema_model = fsdp_ema_setup(ema_model, fsdp_config)
|
| 491 |
+
fsdp_model = fsdp_wrapper(model, fsdp_config)
|
| 492 |
+
apply_activation_checkpointing(
|
| 493 |
+
fsdp_model,
|
| 494 |
+
checkpoint_wrapper_fn=functools.partial(
|
| 495 |
+
checkpoint_wrapper, checkpoint_impl=CheckpointImpl.NO_REENTRANT
|
| 496 |
+
),
|
| 497 |
+
check_fn=grad_checkpoint_check_fn
|
| 498 |
+
)
|
| 499 |
+
|
| 500 |
+
if dist.get_rank() == 0:
|
| 501 |
+
print(fsdp_model)
|
| 502 |
+
for name, param in model.named_parameters():
|
| 503 |
+
print(name, param.requires_grad)
|
| 504 |
+
|
| 505 |
+
# Setup optimizer and scheduler
|
| 506 |
+
optimizer = torch.optim.AdamW(
|
| 507 |
+
fsdp_model.parameters(),
|
| 508 |
+
lr=training_args.lr,
|
| 509 |
+
betas=(training_args.beta1, training_args.beta2),
|
| 510 |
+
eps=training_args.eps,
|
| 511 |
+
weight_decay=0
|
| 512 |
+
)
|
| 513 |
+
if training_args.lr_scheduler == 'cosine':
|
| 514 |
+
scheduler = get_cosine_with_min_lr_schedule_with_warmup(
|
| 515 |
+
optimizer=optimizer,
|
| 516 |
+
num_warmup_steps=training_args.warmup_steps,
|
| 517 |
+
num_training_steps=training_args.total_steps,
|
| 518 |
+
min_lr=training_args.min_lr,
|
| 519 |
+
)
|
| 520 |
+
elif training_args.lr_scheduler == 'constant':
|
| 521 |
+
scheduler = get_constant_schedule_with_warmup(
|
| 522 |
+
optimizer=optimizer, num_warmup_steps=training_args.warmup_steps
|
| 523 |
+
)
|
| 524 |
+
else:
|
| 525 |
+
raise ValueError
|
| 526 |
+
|
| 527 |
+
# maybe resume optimizer, scheduler, and train_steps
|
| 528 |
+
if resume_model_only:
|
| 529 |
+
train_step = 0
|
| 530 |
+
data_status = None
|
| 531 |
+
else:
|
| 532 |
+
optimizer, scheduler, train_step, data_status = FSDPCheckpoint.try_load_train_state(
|
| 533 |
+
resume_from, optimizer, scheduler, fsdp_config,
|
| 534 |
+
)
|
| 535 |
+
|
| 536 |
+
# Setup packed dataloader
|
| 537 |
+
with open(data_args.dataset_config_file, "r") as stream:
|
| 538 |
+
dataset_meta = yaml.safe_load(stream)
|
| 539 |
+
dataset_config = DataConfig(grouped_datasets=dataset_meta)
|
| 540 |
+
if training_args.visual_und:
|
| 541 |
+
dataset_config.vit_patch_size = model_args.vit_patch_size
|
| 542 |
+
dataset_config.max_num_patch_per_side = model_args.vit_max_num_patch_per_side
|
| 543 |
+
if training_args.visual_gen:
|
| 544 |
+
vae_image_downsample = model_args.latent_patch_size * vae_config.downsample
|
| 545 |
+
dataset_config.vae_image_downsample = vae_image_downsample
|
| 546 |
+
dataset_config.max_latent_size = model_args.max_latent_size
|
| 547 |
+
dataset_config.text_cond_dropout_prob = model_args.text_cond_dropout_prob
|
| 548 |
+
dataset_config.vae_cond_dropout_prob = model_args.vae_cond_dropout_prob
|
| 549 |
+
dataset_config.vit_cond_dropout_prob = model_args.vit_cond_dropout_prob
|
| 550 |
+
train_dataset = PackedDataset(
|
| 551 |
+
dataset_config,
|
| 552 |
+
tokenizer=tokenizer,
|
| 553 |
+
special_tokens=new_token_ids,
|
| 554 |
+
local_rank=dist.get_rank(),
|
| 555 |
+
world_size=dist.get_world_size(),
|
| 556 |
+
num_workers=data_args.num_workers,
|
| 557 |
+
expected_num_tokens=training_args.expected_num_tokens,
|
| 558 |
+
max_num_tokens_per_sample=data_args.max_num_tokens_per_sample,
|
| 559 |
+
max_num_tokens=data_args.max_num_tokens,
|
| 560 |
+
max_buffer_size=data_args.max_buffer_size,
|
| 561 |
+
prefer_buffer_before=data_args.prefer_buffer_before,
|
| 562 |
+
interpolate_pos=model_args.interpolate_pos,
|
| 563 |
+
use_flex=training_args.use_flex,
|
| 564 |
+
data_status=data_status,
|
| 565 |
+
)
|
| 566 |
+
train_dataset.set_epoch(data_args.data_seed)
|
| 567 |
+
train_loader = DataLoader(
|
| 568 |
+
train_dataset,
|
| 569 |
+
batch_size=1, # batch size is 1 packed dataset
|
| 570 |
+
num_workers=data_args.num_workers,
|
| 571 |
+
pin_memory=True,
|
| 572 |
+
collate_fn=collate_wrapper(),
|
| 573 |
+
drop_last=True,
|
| 574 |
+
prefetch_factor=data_args.prefetch_factor,
|
| 575 |
+
)
|
| 576 |
+
|
| 577 |
+
# Prepare models for training:
|
| 578 |
+
if training_args.visual_gen:
|
| 579 |
+
vae_model.to(device).eval()
|
| 580 |
+
fsdp_model.train()
|
| 581 |
+
ema_model.eval()
|
| 582 |
+
|
| 583 |
+
# train loop
|
| 584 |
+
start_time = time()
|
| 585 |
+
logger.info(f"Training for {training_args.total_steps} steps, starting at {train_step}...")
|
| 586 |
+
for curr_step, data in enumerate(train_loader, start=train_step):
|
| 587 |
+
data = data.cuda(device).to_dict()
|
| 588 |
+
data_indexes = data.pop('batch_data_indexes', None)
|
| 589 |
+
ce_loss_weights = data.pop('ce_loss_weights', None)
|
| 590 |
+
with torch.amp.autocast("cuda", enabled=True, dtype=torch.bfloat16):
|
| 591 |
+
if training_args.visual_gen:
|
| 592 |
+
with torch.no_grad():
|
| 593 |
+
data['padded_latent'] = vae_model.encode(data.pop('padded_images'))
|
| 594 |
+
loss_dict = fsdp_model(**data)
|
| 595 |
+
|
| 596 |
+
loss = 0
|
| 597 |
+
ce = loss_dict["ce"]
|
| 598 |
+
if ce is not None:
|
| 599 |
+
total_ce_tokens = torch.tensor(len(data['ce_loss_indexes']), device=device)
|
| 600 |
+
dist.all_reduce(total_ce_tokens, op=dist.ReduceOp.SUM)
|
| 601 |
+
if training_args.ce_loss_reweighting:
|
| 602 |
+
ce = ce * ce_loss_weights
|
| 603 |
+
total_ce_loss_weights = ce_loss_weights.sum()
|
| 604 |
+
dist.all_reduce(total_ce_loss_weights, op=dist.ReduceOp.SUM)
|
| 605 |
+
ce = ce.sum() * dist.get_world_size() / total_ce_loss_weights
|
| 606 |
+
else:
|
| 607 |
+
ce = ce.sum() * dist.get_world_size() / total_ce_tokens
|
| 608 |
+
loss_dict["ce"] = ce.detach()
|
| 609 |
+
loss = loss + ce * training_args.ce_weight
|
| 610 |
+
else:
|
| 611 |
+
assert not training_args.visual_und
|
| 612 |
+
loss_dict["ce"] = torch.tensor(0, device=device)
|
| 613 |
+
total_ce_tokens = torch.tensor(0, device=device)
|
| 614 |
+
|
| 615 |
+
if training_args.visual_gen:
|
| 616 |
+
mse = loss_dict["mse"]
|
| 617 |
+
total_mse_tokens = torch.tensor(len(data['mse_loss_indexes']), device=device)
|
| 618 |
+
dist.all_reduce(total_mse_tokens, op=dist.ReduceOp.SUM)
|
| 619 |
+
mse = mse.mean(dim=-1).sum() * dist.get_world_size() / total_mse_tokens
|
| 620 |
+
loss_dict["mse"] = mse.detach()
|
| 621 |
+
loss = loss + mse * training_args.mse_weight
|
| 622 |
+
else:
|
| 623 |
+
assert not training_args.visual_gen
|
| 624 |
+
loss_dict["mse"] = torch.tensor(0, device=device)
|
| 625 |
+
total_mse_tokens = torch.tensor(0, device=device)
|
| 626 |
+
|
| 627 |
+
optimizer.zero_grad()
|
| 628 |
+
loss.backward()
|
| 629 |
+
total_norm = fsdp_model.clip_grad_norm_(training_args.max_grad_norm)
|
| 630 |
+
optimizer.step()
|
| 631 |
+
scheduler.step()
|
| 632 |
+
fsdp_ema_update(ema_model, fsdp_model, decay=training_args.ema)
|
| 633 |
+
|
| 634 |
+
# Log loss values:
|
| 635 |
+
if curr_step % training_args.log_every == 0:
|
| 636 |
+
total_samples = torch.tensor(len(data['sample_lens']), device=device)
|
| 637 |
+
dist.all_reduce(total_samples, op=dist.ReduceOp.SUM)
|
| 638 |
+
|
| 639 |
+
# Measure training speed:
|
| 640 |
+
torch.cuda.synchronize()
|
| 641 |
+
end_time = time()
|
| 642 |
+
steps_per_sec = training_args.log_every / (end_time - start_time)
|
| 643 |
+
message = f"(step={curr_step:07d}) "
|
| 644 |
+
wandb_log = {}
|
| 645 |
+
for key, value in loss_dict.items():
|
| 646 |
+
# Reduce loss history over all processes:
|
| 647 |
+
avg_loss = torch.tensor(value.item(), device=device)
|
| 648 |
+
dist.all_reduce(avg_loss, op=dist.ReduceOp.SUM)
|
| 649 |
+
avg_loss = avg_loss.item() / dist.get_world_size()
|
| 650 |
+
message += f"Train Loss {key}: {avg_loss:.4f}, "
|
| 651 |
+
wandb_log[key] = avg_loss
|
| 652 |
+
message += f"Train Steps/Sec: {steps_per_sec:.2f}, "
|
| 653 |
+
logger.info(message)
|
| 654 |
+
|
| 655 |
+
wandb_log['lr'] = optimizer.param_groups[0]['lr']
|
| 656 |
+
wandb_log['total_mse_tokens'] = total_mse_tokens.item()
|
| 657 |
+
wandb_log['total_ce_tokens'] = total_ce_tokens.item()
|
| 658 |
+
wandb_log['total_norm'] = total_norm.item()
|
| 659 |
+
wandb_log['total_samples'] = total_samples.item()
|
| 660 |
+
|
| 661 |
+
mem_allocated = torch.tensor(torch.cuda.max_memory_allocated() / 1024**2, device=device)
|
| 662 |
+
dist.all_reduce(mem_allocated, op=dist.ReduceOp.MAX)
|
| 663 |
+
wandb_log['mem_allocated'] = mem_allocated
|
| 664 |
+
mem_cache = torch.tensor(torch.cuda.max_memory_reserved() / 1024**2, device=device)
|
| 665 |
+
dist.all_reduce(mem_cache, op=dist.ReduceOp.MAX)
|
| 666 |
+
wandb_log['mem_cache'] = mem_cache
|
| 667 |
+
|
| 668 |
+
if dist.get_rank() == 0:
|
| 669 |
+
wandb.log(wandb_log, step=curr_step)
|
| 670 |
+
start_time = time()
|
| 671 |
+
|
| 672 |
+
if data_status is None:
|
| 673 |
+
data_status = {}
|
| 674 |
+
for item in data_indexes:
|
| 675 |
+
if item['dataset_name'] not in data_status.keys():
|
| 676 |
+
data_status[item['dataset_name']] = {}
|
| 677 |
+
data_status[item['dataset_name']][item['worker_id']] = item['data_indexes']
|
| 678 |
+
|
| 679 |
+
if curr_step > 0 and curr_step % training_args.save_every == 0:
|
| 680 |
+
if dist.get_rank() == 0:
|
| 681 |
+
gather_list = [None] * dist.get_world_size()
|
| 682 |
+
else:
|
| 683 |
+
gather_list = None
|
| 684 |
+
dist.gather_object(data_status, gather_list, dst=0)
|
| 685 |
+
|
| 686 |
+
FSDPCheckpoint.fsdp_save_ckpt(
|
| 687 |
+
ckpt_dir=training_args.checkpoint_dir,
|
| 688 |
+
train_steps=curr_step,
|
| 689 |
+
model=fsdp_model,
|
| 690 |
+
ema_model=ema_model,
|
| 691 |
+
optimizer=optimizer,
|
| 692 |
+
scheduler=scheduler,
|
| 693 |
+
logger=logger,
|
| 694 |
+
fsdp_config=fsdp_config,
|
| 695 |
+
data_status=gather_list
|
| 696 |
+
)
|
| 697 |
+
|
| 698 |
+
logger.info("Done!")
|
| 699 |
+
if dist.get_rank() == 0:
|
| 700 |
+
wandb.finish()
|
| 701 |
+
dist.destroy_process_group()
|
| 702 |
+
|
| 703 |
+
|
| 704 |
+
if __name__ == "__main__":
|
| 705 |
+
main()
|