Upload infer_qwen2_vl.py with huggingface_hub
Browse files- infer_qwen2_vl.py +127 -0
infer_qwen2_vl.py
ADDED
|
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
|
| 2 |
+
from qwen_vl_utils import process_vision_info
|
| 3 |
+
import json
|
| 4 |
+
|
| 5 |
+
def read_json(file_path):
|
| 6 |
+
with open(file_path, 'r', encoding='utf-8') as file:
|
| 7 |
+
data = json.load(file)
|
| 8 |
+
return data
|
| 9 |
+
|
| 10 |
+
def write_json(file_path, data):
|
| 11 |
+
with open(file_path, 'w', encoding='utf-8') as file:
|
| 12 |
+
json.dump(data, file, ensure_ascii=False, indent=4)
|
| 13 |
+
|
| 14 |
+
# default: Load the model on the available device(s)
|
| 15 |
+
model_path = '/inspire/hdd/ws-ba572160-47f8-4ca1-984e-d6bcdeb95dbb/a100-maybe/albus/ICCV_2025/qvq/models/QVQ-72B-Preview'
|
| 16 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 17 |
+
model_path, torch_dtype="auto", device_map="auto"
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
# default processer
|
| 21 |
+
processor = AutoProcessor.from_pretrained(model_path)
|
| 22 |
+
|
| 23 |
+
# The default range for the number of visual tokens per image in the model is 4-16384. You can set min_pixels and max_pixels according to your needs, such as a token count range of 256-1280, to balance speed and memory usage.
|
| 24 |
+
# min_pixels = 256*28*28
|
| 25 |
+
# max_pixels = 1280*28*28
|
| 26 |
+
#processor = AutoProcessor.from_pretrained("Qwen/QVQ-72B-Preview", min_pixels=min_pixels, max_pixels=max_pixels)
|
| 27 |
+
|
| 28 |
+
import glob
|
| 29 |
+
from PIL import Image
|
| 30 |
+
import argparse
|
| 31 |
+
import os
|
| 32 |
+
|
| 33 |
+
# parser = argparse.ArgumentParser(description="Process a dataset with specific index range.")
|
| 34 |
+
# parser.add_argument("--batch_size", type=int, default = 1,help="batch size")
|
| 35 |
+
# #parser.add_argument("--index", type=int, default = 0,help="index")
|
| 36 |
+
# args = parser.parse_args()
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
folder = "/inspire/hdd/ws-ba572160-47f8-4ca1-984e-d6bcdeb95dbb/a100-maybe/albus/ICCV_2025/qvq/dataset"
|
| 40 |
+
|
| 41 |
+
file_names = os.listdir(folder)
|
| 42 |
+
|
| 43 |
+
num_image = len(file_names)
|
| 44 |
+
|
| 45 |
+
begin, end, batch_size= 0, num_image, 6
|
| 46 |
+
print(f"beigin : {begin}, end : {end}, batch_size : {batch_size}")
|
| 47 |
+
messages = [
|
| 48 |
+
{
|
| 49 |
+
"role": "system",
|
| 50 |
+
"content": [
|
| 51 |
+
{"type": "text", "text": "You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step."}
|
| 52 |
+
],
|
| 53 |
+
},
|
| 54 |
+
{
|
| 55 |
+
"role": "user",
|
| 56 |
+
"content": [
|
| 57 |
+
{
|
| 58 |
+
"type": "image",
|
| 59 |
+
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/QVQ/demo.png",
|
| 60 |
+
},
|
| 61 |
+
{"type": "text", "text": "Please describe in detail the content of the picture."},
|
| 62 |
+
],
|
| 63 |
+
}
|
| 64 |
+
]
|
| 65 |
+
|
| 66 |
+
from tqdm import tqdm
|
| 67 |
+
# Preparation for inference
|
| 68 |
+
ans = []
|
| 69 |
+
counter = 0
|
| 70 |
+
for batch_idx in tqdm(range(begin, end, batch_size)):
|
| 71 |
+
up = min(batch_idx + batch_size, end)
|
| 72 |
+
batch = file_names[batch_idx: up]
|
| 73 |
+
print(f"data index range : {batch_idx} ~ {up}")
|
| 74 |
+
image_inputs_batch, video_inputs_batch,text_batch = [], [], []
|
| 75 |
+
for idx,i in enumerate(batch):
|
| 76 |
+
#img = batch[i]
|
| 77 |
+
#print('gain image successfully !')
|
| 78 |
+
img_path = '/inspire/hdd/ws-ba572160-47f8-4ca1-984e-d6bcdeb95dbb/a100-maybe/albus/ICCV_2025/qvq/dataset/' + i
|
| 79 |
+
#print(img_path)
|
| 80 |
+
messages[1]["content"][0]["image"] = '/inspire/hdd/ws-ba572160-47f8-4ca1-984e-d6bcdeb95dbb/a100-maybe/albus/ICCV_2025/qvq/dataset/' + i
|
| 81 |
+
text = processor.apply_chat_template(
|
| 82 |
+
messages, tokenize=False, add_generation_prompt=True
|
| 83 |
+
)
|
| 84 |
+
text_batch.append(text)
|
| 85 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
| 86 |
+
print(video_inputs)
|
| 87 |
+
image_inputs_batch.append(image_inputs)
|
| 88 |
+
video_inputs_batch.append(video_inputs)
|
| 89 |
+
inputs = processor(
|
| 90 |
+
text=text_batch, # [text]
|
| 91 |
+
images=image_inputs_batch,
|
| 92 |
+
videos=None,
|
| 93 |
+
padding=True,
|
| 94 |
+
return_tensors="pt",
|
| 95 |
+
)
|
| 96 |
+
inputs = inputs.to("cuda")
|
| 97 |
+
|
| 98 |
+
# Inference: Generation of the output
|
| 99 |
+
|
| 100 |
+
#print(inputs)
|
| 101 |
+
|
| 102 |
+
# for x in range(len(inputs)):
|
| 103 |
+
# print(f"Generating {x}th image")
|
| 104 |
+
# generated_ids = model.generate(**x, max_new_tokens=8192)
|
| 105 |
+
# generated_ids_trimmed = [
|
| 106 |
+
# out_ids[len(in_ids) :] for in_ids, out_ids in zip(x.input_ids, generated_ids)
|
| 107 |
+
# ]
|
| 108 |
+
# output_text = processor.batch_decode(
|
| 109 |
+
# generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=True
|
| 110 |
+
# )
|
| 111 |
+
# ans.append(output_text)
|
| 112 |
+
|
| 113 |
+
generated_ids = model.generate(**inputs, max_new_tokens=8192)
|
| 114 |
+
generated_ids_trimmed = [
|
| 115 |
+
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 116 |
+
]
|
| 117 |
+
output_text = processor.batch_decode(
|
| 118 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
| 119 |
+
)
|
| 120 |
+
ans.append(output_text)
|
| 121 |
+
save_path = "output_final.json"
|
| 122 |
+
counter = counter + 1
|
| 123 |
+
if counter % 10 == 0 or up + 10 >= end:
|
| 124 |
+
print(f"Saving data at iteration {idx + 1}")
|
| 125 |
+
write_json(save_path, ans)
|
| 126 |
+
|
| 127 |
+
|