File size: 32,426 Bytes
d180a10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 |
import math
import torch
import torch.nn as nn
import numpy as np
import torch.nn.functional as F
def get_timestep_embedding(timesteps, embedding_dim):
"""Build sinusoidal timestep embeddings.
Args:
timesteps (torch.Tensor): A 1-D Tensor of N timesteps.
embedding_dim (int): The dimension of the embedding.
Returns:
torch.Tensor: N x embedding_dim Tensor of positional embeddings.
"""
assert len(timesteps.shape) == 1
half_dim = embedding_dim // 2
emb = np.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
emb = emb.cuda() # Move embedding to CUDA device
emb = timesteps.float()[:, None] * emb[None, :]
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
if embedding_dim % 2 == 1: # Zero pad if embedding_dim is odd
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
return emb
class Attention(nn.Module):
"""A simple attention layer to get weights for attributes."""
def __init__(self, embedding_dim):
super(Attention, self).__init__()
self.fc = nn.Linear(embedding_dim, 1)
def forward(self, x):
# x shape: (batch_size, num_attributes, embedding_dim)
weights = self.fc(x) # shape: (batch_size, num_attributes, 1)
# Apply softmax along the attributes dimension to get attention weights.
weights = F.softmax(weights, dim=1)
return weights
class WideAndDeep(nn.Module):
"""Network to combine attribute (start/end points) and prototype embeddings."""
def __init__(self, in_channels, embedding_dim=512):
super(WideAndDeep, self).__init__()
# Process start point and end point independently
self.start_fc1 = nn.Linear(in_channels, embedding_dim)
self.start_fc2 = nn.Linear(embedding_dim, embedding_dim)
self.end_fc1 = nn.Linear(in_channels, embedding_dim)
self.end_fc2 = nn.Linear(embedding_dim, embedding_dim)
# Process prototype features
self.prototype_fc1 = nn.Linear(512, embedding_dim)
self.prototype_fc2 = nn.Linear(embedding_dim, embedding_dim)
self.relu = nn.ReLU()
def forward(self, attr, prototype):
# attr shape: (batch_size, num_features, traj_length)
# prototype shape: (batch_size, prototype_embedding_dim) - assuming N_CLUSTER is handled before or it's single prototype
start_point = attr[:, :, 0].float() # First point in trajectory features
end_point = attr[:, :, -1].float() # Last point in trajectory features
# Process start point features
start_x = self.start_fc1(start_point)
start_x = self.relu(start_x)
start_embed = self.start_fc2(start_x)
# Process end point features
end_x = self.end_fc1(end_point)
end_x = self.relu(end_x)
end_embed = self.end_fc2(end_x)
# Combine the processed start and end point features
attr_embed = start_embed + end_embed
# Process prototype features
proto_x = self.prototype_fc1(prototype)
proto_x = self.relu(proto_x)
proto_embed = self.prototype_fc2(proto_x)
# Combine the processed attribute and prototype features
combined_embed = attr_embed + proto_embed # Simple addition for combination
return combined_embed
def nonlinearity(x):
# Swish activation function (SiLU)
return x * torch.sigmoid(x)
def Normalize(in_channels):
"""Group normalization."""
return torch.nn.GroupNorm(num_groups=32,
num_channels=in_channels,
eps=1e-6,
affine=True)
class Upsample(nn.Module):
"""Upsampling layer, optionally with a 1D convolution."""
def __init__(self, in_channels, with_conv=True):
super().__init__()
self.with_conv = with_conv
if self.with_conv:
self.conv = torch.nn.Conv1d(in_channels,
in_channels,
kernel_size=3,
stride=1,
padding=1)
def forward(self, x):
x = torch.nn.functional.interpolate(x,
scale_factor=2.0,
mode="nearest") # Upsample using nearest neighbor
if self.with_conv:
x = self.conv(x)
return x
class Downsample(nn.Module):
"""Downsampling layer, optionally with a 1D convolution."""
def __init__(self, in_channels, with_conv=True):
super().__init__()
self.with_conv = with_conv
if self.with_conv:
# No asymmetric padding in torch.nn.Conv1d, must do it ourselves via F.pad.
self.conv = torch.nn.Conv1d(in_channels,
in_channels,
kernel_size=3,
stride=2,
padding=0)
def forward(self, x):
if self.with_conv:
pad = (1, 1) # Padding for kernel_size=3, stride=2 to maintain roughly half size
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
x = self.conv(x)
else:
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) # Avg pool if no conv
return x
class ResnetBlock(nn.Module):
"""Residual block for the U-Net."""
def __init__(self,
in_channels,
out_channels=None,
conv_shortcut=False,
dropout=0.1,
temb_channels=512):
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.use_conv_shortcut = conv_shortcut
self.norm1 = Normalize(in_channels)
self.conv1 = torch.nn.Conv1d(in_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1)
self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
self.norm2 = Normalize(out_channels)
self.dropout = torch.nn.Dropout(dropout)
self.conv2 = torch.nn.Conv1d(out_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
self.conv_shortcut = torch.nn.Conv1d(in_channels,
out_channels,
kernel_size=3, # Convolutional shortcut
stride=1,
padding=1)
else:
self.nin_shortcut = torch.nn.Conv1d(in_channels,
out_channels,
kernel_size=1, # 1x1 convolution (Network-in-Network) shortcut
stride=1,
padding=0)
def forward(self, x, temb):
h = x
h = self.norm1(h)
h = nonlinearity(h)
h = self.conv1(h)
h = h + self.temb_proj(nonlinearity(temb))[:, :, None]
h = self.norm2(h)
h = nonlinearity(h)
h = self.dropout(h)
h = self.conv2(h)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
x = self.conv_shortcut(x)
else:
x = self.nin_shortcut(x)
return x + h
class AttnBlock(nn.Module):
"""Self-attention block for the U-Net."""
def __init__(self, in_channels):
super().__init__()
self.in_channels = in_channels
self.norm = Normalize(in_channels)
self.q = torch.nn.Conv1d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
self.k = torch.nn.Conv1d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
self.v = torch.nn.Conv1d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
self.proj_out = torch.nn.Conv1d(in_channels,
in_channels,
kernel_size=1,
stride=1,
padding=0)
def forward(self, x):
h_ = x
h_ = self.norm(h_)
q = self.q(h_) # Query
k = self.k(h_) # Key
v = self.v(h_) # Value
b, c, w = q.shape
q = q.permute(0, 2, 1) # b,w,c (sequence_length, channels)
w_ = torch.bmm(q, k) # b,w,w (attention scores: q @ k.T)
w_ = w_ * (int(c)**(-0.5)) # Scale by sqrt(channel_dim)
w_ = torch.nn.functional.softmax(w_, dim=2) # Softmax over scores
# attend to values
w_ = w_.permute(0, 2, 1) # b,w,w (transpose back for v @ w_ if v is b,c,w)
h_ = torch.bmm(v, w_) # Weighted sum of values
h_ = h_.reshape(b, c, w)
h_ = self.proj_out(h_)
return x + h_ # Add residual connection
class Model(nn.Module):
"""The core U-Net model for the diffusion process."""
def __init__(self, config):
super(Model, self).__init__()
self.config = config
ch, out_ch, ch_mult = config.model.ch, config.model.out_ch, tuple(config.model.ch_mult)
num_res_blocks = config.model.num_res_blocks
attn_resolutions = config.model.attn_resolutions
dropout = config.model.dropout
in_channels = config.model.in_channels
resolution = config.data.traj_length
resamp_with_conv = config.model.resamp_with_conv
num_timesteps = config.diffusion.num_diffusion_timesteps
if config.model.type == 'bayesian':
self.logvar = nn.Parameter(torch.zeros(num_timesteps))
self.ch = ch
self.temb_ch = self.ch * 4
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.in_channels = in_channels
# timestep embedding
self.temb = nn.Module()
self.temb.dense = nn.ModuleList([
torch.nn.Linear(self.ch, self.temb_ch),
torch.nn.Linear(self.temb_ch, self.temb_ch),
])
# downsampling
self.conv_in = torch.nn.Conv1d(in_channels, # in_channels related to embedding_dim, not traj_length. Input format (batch_size, embedding_dim, traj_length)
self.ch,
kernel_size=3,
stride=1,
padding=1)
curr_res = resolution
in_ch_mult = (1, ) + ch_mult
self.down = nn.ModuleList()
block_in = None
for i_level in range(self.num_resolutions):
block = nn.ModuleList()
attn = nn.ModuleList()
block_in = ch * in_ch_mult[i_level]
block_out = ch * ch_mult[i_level]
for i_block in range(self.num_res_blocks):
block.append(
ResnetBlock(in_channels=block_in,
out_channels=block_out,
temb_channels=self.temb_ch,
dropout=dropout))
block_in = block_out
if curr_res in attn_resolutions:
attn.append(AttnBlock(block_in))
down = nn.Module()
down.block = block
down.attn = attn
if i_level != self.num_resolutions - 1:
down.downsample = Downsample(block_in, resamp_with_conv)
curr_res = curr_res // 2
self.down.append(down)
# middle block
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout)
self.mid.attn_1 = AttnBlock(block_in)
self.mid.block_2 = ResnetBlock(in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout)
# upsampling
self.up = nn.ModuleList()
for i_level in reversed(range(self.num_resolutions)):
block = nn.ModuleList()
attn = nn.ModuleList()
block_out = ch * ch_mult[i_level]
skip_in = ch * ch_mult[i_level]
for i_block in range(self.num_res_blocks + 1):
if i_block == self.num_res_blocks:
skip_in = ch * in_ch_mult[i_level]
block.append(
ResnetBlock(in_channels=block_in + skip_in,
out_channels=block_out,
temb_channels=self.temb_ch,
dropout=dropout))
block_in = block_out
if curr_res in attn_resolutions:
attn.append(AttnBlock(block_in))
up = nn.Module()
up.block = block
up.attn = attn
if i_level != 0:
up.upsample = Upsample(block_in, resamp_with_conv)
curr_res = curr_res * 2
self.up.insert(0, up) # Prepend to get consistent order for upsampling path
# end
self.norm_out = Normalize(block_in)
self.conv_out = torch.nn.Conv1d(block_in,
out_ch,
kernel_size=3,
stride=1,
padding=1)
def forward(self, x, t, extra_embed=None):
assert x.shape[2] == self.resolution # Ensure input trajectory length matches model resolution
# timestep embedding
temb = get_timestep_embedding(t, self.ch)
temb = self.temb.dense[0](temb)
temb = nonlinearity(temb)
temb = self.temb.dense[1](temb)
if extra_embed is not None:
temb = temb + extra_embed
# downsampling
hs = [self.conv_in(x)] # List to store hidden states for skip connections
# print(hs[-1].shape)
for i_level in range(self.num_resolutions):
for i_block in range(self.num_res_blocks):
h = self.down[i_level].block[i_block](hs[-1], temb)
# print(i_level, i_block, h.shape)
if len(self.down[i_level].attn) > 0:
h = self.down[i_level].attn[i_block](h)
hs.append(h)
if i_level != self.num_resolutions - 1:
hs.append(self.down[i_level].downsample(hs[-1]))
# middle
# print(hs[-1].shape)
# print(len(hs))
h = hs[-1] # Last hidden state from downsampling path
h = self.mid.block_1(h, temb)
h = self.mid.attn_1(h)
h = self.mid.block_2(h, temb)
# print(h.shape)
# upsampling
for i_level in reversed(range(self.num_resolutions)):
for i_block in range(self.num_res_blocks + 1):
ht = hs.pop() # Get corresponding hidden state from downsampling path
if ht.size(-1) != h.size(-1):
# Pad if spatial dimensions do not match (can happen with odd resolutions)
h = torch.nn.functional.pad(h,
(0, ht.size(-1) - h.size(-1)))
h = self.up[i_level].block[i_block](torch.cat([h, ht], dim=1), # Concatenate skip connection
temb)
# print(i_level, i_block, h.shape)
if len(self.up[i_level].attn) > 0:
h = self.up[i_level].attn[i_block](h)
if i_level != 0:
h = self.up[i_level].upsample(h)
# end
h = self.norm_out(h)
h = nonlinearity(h)
h = self.conv_out(h)
return h
class Guide_UNet(nn.Module):
"""A U-Net model guided by attribute and prototype embeddings."""
def __init__(self, config):
super(Guide_UNet, self).__init__()
self.config = config
self.in_channels = config.model.in_channels
self.ch = config.model.ch * 4
self.attr_dim = config.model.attr_dim
self.guidance_scale = config.model.guidance_scale
self.unet = Model(config)
self.guide_emb = WideAndDeep(self.in_channels, self.ch)
self.place_emb = WideAndDeep(self.in_channels, self.ch)
def forward(self, x, t, attr, prototype):
guide_emb = self.guide_emb(attr, prototype) # Conditional embedding
target_device = attr.device # Get device from an existing input tensor
place_vector = torch.zeros(attr.shape, device=target_device)
place_prototype = torch.zeros(prototype.shape, device=target_device)
place_emb = self.place_emb(place_vector, place_prototype) # Unconditional embedding
cond_noise = self.unet(x, t, guide_emb) # Conditioned UNet pass
uncond_noise = self.unet(x, t, place_emb) # Unconditioned UNet pass (for classifier-free guidance)
# Classifier-free guidance
pred_noise = cond_noise + self.guidance_scale * (cond_noise -
uncond_noise)
return pred_noise
class WeightedLoss(nn.Module):
"""Base class for weighted losses."""
def __init__(self):
super(WeightedLoss, self).__init__()
def forward(self, pred, target, weighted=1.0):
"""
pred, target:[batch_size, 2, traj_length]
"""
loss = self._loss(pred, target)
weightedLoss = (loss * weighted).mean() # Apply weights and average
# loss = self._loss(weighted * pred, weighted * target)
# weightedLoss = loss.mean()
return weightedLoss
class WeightedL1(WeightedLoss):
"""Weighted L1 Loss (Mean Absolute Error)."""
def _loss(self, pred, target):
return torch.abs(pred - target)
class WeightedL2(WeightedLoss):
"""Weighted L2 Loss (Mean Squared Error)."""
def _loss(self, pred, target):
return F.mse_loss(pred, target, reduction='none')
class WeightedL3(WeightedLoss):
"""A custom weighted L3-like loss, where weights depend on the error magnitude."""
def __init__(self, base_weight=1000.0, scale_factor=10000.0):
super(WeightedL3, self).__init__()
self.base_weight = base_weight
self.scale_factor = scale_factor
def _loss(self, pred, target):
error = F.mse_loss(pred, target, reduction='none')
weight = self.base_weight + self.scale_factor * error
loss = weight * torch.abs(pred - target)
return loss
Losses = {
'l1': WeightedL1,
'l2': WeightedL2,
'l3': WeightedL3,
}
def extract(a, t, x_shape):
"""Extracts values from a (typically constants like alphas) at given timesteps t
and reshapes them to match the batch shape x_shape.
"""
b, *_ = t.shape
out = a.gather(-1, t)
return out.reshape(b, *((1,) * (len(x_shape) - 1))) # Reshape to (b, 1, 1, ...) for broadcasting
class Diffusion(nn.Module):
"""Denoising Diffusion Probabilistic Model (DDPM).
This class now also includes DDIM sampling capabilities.
"""
def __init__(self, loss_type, config, clip_denoised=True, predict_epsilon=True, **kwargs):
super(Diffusion, self).__init__()
self.predict_epsilon = predict_epsilon
self.T = config.diffusion.num_diffusion_timesteps
self.model = Guide_UNet(config)
self.beta_schedule = config.diffusion.beta_schedule
self.beta_start = config.diffusion.beta_start
self.beta_end = config.diffusion.beta_end
if self.beta_schedule == "linear":
betas = torch.linspace(self.beta_start, self.beta_end, self.T, dtype=torch.float32)
elif self.beta_schedule == "cosine":
# Implement cosine schedule
pass
else:
raise ValueError(f"Unsupported beta_schedule: {self.beta_schedule}")
alphas = 1.0 - betas
alpha_cumprod = torch.cumprod(alphas, axis=0)
alpha_cumprod_prev = torch.cat([torch.ones(1, device=betas.device), alpha_cumprod[:-1]])
self.register_buffer("betas", betas)
self.register_buffer("alphas", alphas)
self.register_buffer("alpha_cumprod", alpha_cumprod)
self.register_buffer("alpha_cumprod_prev", alpha_cumprod_prev)
# Parameters for q(x_t | x_0) (forward process - DDPM & DDIM)
self.register_buffer("sqrt_alphas_cumprod", torch.sqrt(alpha_cumprod))
self.register_buffer("sqrt_one_minus_alphas_cumprod", torch.sqrt(1.0 - alpha_cumprod))
# Parameters for DDPM reverse process posterior q(x_{t-1} | x_t, x_0)
posterior_variance = betas * (1.0 - alpha_cumprod_prev) / (1.0 - alpha_cumprod)
self.register_buffer("posterior_variance", posterior_variance)
self.register_buffer("posterior_log_variance_clipped", torch.log(posterior_variance.clamp(min=1e-20)))
self.register_buffer("posterior_mean_coef1", betas * torch.sqrt(alpha_cumprod_prev) / (1.0 - alpha_cumprod))
self.register_buffer("posterior_mean_coef2", (1.0 - alpha_cumprod_prev) * torch.sqrt(alphas) / (1.0 - alpha_cumprod))
# Parameters for computing x_0 from x_t and noise (used in DDPM prediction and DDIM sampling)
self.register_buffer("sqrt_recip_alphas_cumprod", torch.sqrt(1.0 / alpha_cumprod))
self.register_buffer("sqrt_recipminus_alphas_cumprod", torch.sqrt(1.0 / alpha_cumprod - 1))
self.loss_fn = Losses[loss_type]()
def q_posterior(self, x_start, x, t):
"""Compute the mean, variance, and log variance of the posterior q(x_{t-1} | x_t, x_0)."""
posterior_mean = (
extract(self.posterior_mean_coef1, t, x.shape) * x_start
+ extract(self.posterior_mean_coef2, t, x.shape) * x
)
posterior_variance = extract(self.posterior_variance, t, x.shape)
posterior_log_variance = extract(self.posterior_log_variance_clipped, t, x.shape)
return posterior_mean, posterior_variance, posterior_log_variance
def predict_start_from_noise(self, x, t, pred_noise):
"""Compute x_0 from x_t and predicted noise epsilon_theta(x_t, t).
Used by both DDPM and DDIM.
"""
return (
extract(self.sqrt_recip_alphas_cumprod, t, x.shape) * x
- extract(self.sqrt_recipminus_alphas_cumprod, t, x.shape) * pred_noise
)
def p_mean_variance(self, x, t, attr, prototype):
"""Compute the mean and variance of the reverse process p_theta(x_{t-1} | x_t)."""
pred_noise = self.model(x, t, attr, prototype)
x_recon = self.predict_start_from_noise(x, t, pred_noise) # Predict x0
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_recon, x, t)
return model_mean, posterior_log_variance
def p_sample(self, x, t, attr, prototype, start_end_info):
"""Sample x_{t-1} from the model p_theta(x_{t-1} | x_t) (DDPM step)."""
b = x.shape[0]
model_mean, model_log_variance = self.p_mean_variance(x, t, attr, prototype)
noise = torch.randn_like(x)
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) # No noise when t=0
x = model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
# Fix the first and last point for trajectory interpolation
x[:, :, 0] = start_end_info[:, :, 0]
x[:, :, -1] = start_end_info[:, :, -1]
return x
def p_sample_loop(self, test_x0, attr, prototype, *args, **kwargs):
"""DDPM sampling loop to generate x_0 from x_T (noise)."""
batch_size = attr.shape[0]
device = attr.device # Assuming attr is on the correct device
x = torch.randn(attr.shape, requires_grad=False, device=device) # Start with pure noise
start_end_info = test_x0.clone() # Contains the ground truth start and end points
# Fix the first and last point from the start
x[:, :, 0] = start_end_info[:, :, 0]
x[:, :, -1] = start_end_info[:, :, -1]
for i in reversed(range(0, self.T)): # Iterate from T-1 down to 0
t = torch.full((batch_size,), i, dtype=torch.long, device=device)
x = self.p_sample(x, t, attr, prototype, start_end_info)
return x
# --------------------- DDIM Sampling Methods ---------------------
def ddim_sample(self, x, t, t_prev, attr, prototype, start_end_info, eta=0.0):
"""
DDIM sampling step from t to t_prev.
eta: Controls stochasticity. 0 for DDIM (deterministic), 1 for DDPM-like (stochastic).
"""
# Ensure model is on the same device as x
self.model.to(x.device)
pred_noise = self.model(x, t, attr, prototype)
x_0_pred = self.predict_start_from_noise(x, t, pred_noise)
x_0_pred[:, :, 0] = start_end_info[:, :, 0]
x_0_pred[:, :, -1] = start_end_info[:, :, -1]
alpha_cumprod_t = extract(self.alpha_cumprod, t, x.shape)
alpha_cumprod_t_prev = extract(self.alpha_cumprod, t_prev, x.shape) if t_prev.all() >= 0 else torch.ones_like(alpha_cumprod_t)
sigma_t = eta * torch.sqrt((1 - alpha_cumprod_t_prev) / (1 - alpha_cumprod_t) * (1 - alpha_cumprod_t / alpha_cumprod_t_prev))
c1 = torch.sqrt(alpha_cumprod_t_prev)
c2 = torch.sqrt(1 - alpha_cumprod_t_prev - sigma_t**2)
noise_cond = torch.zeros_like(x)
if eta > 0:
noise_cond = torch.randn_like(x)
noise_cond[:, :, 0] = 0
noise_cond[:, :, -1] = 0
x_prev = c1 * x_0_pred + c2 * pred_noise + sigma_t * noise_cond
x_prev[:, :, 0] = start_end_info[:, :, 0]
x_prev[:, :, -1] = start_end_info[:, :, -1]
return x_prev
def ddim_sample_loop(self, test_x0, attr, prototype, num_steps=50, eta=0.0):
"""
DDIM sampling loop. Can use fewer steps than original diffusion process.
num_steps: Number of sampling steps (can be less than self.T).
eta: Controls stochasticity (0 for deterministic, 1 for fully stochastic).
"""
batch_size = attr.shape[0]
device = attr.device # Assuming attr is on the correct device
x = torch.randn(attr.shape, requires_grad=False, device=device)
start_end_info = test_x0.clone()
x[:, :, 0] = start_end_info[:, :, 0]
x[:, :, -1] = start_end_info[:, :, -1]
times = torch.linspace(self.T - 1, 0, num_steps + 1, device=device).long() # Ensure times tensor is on the same device
for i in range(num_steps):
t = times[i]
t_next = times[i + 1]
# Create full tensors for t and t_next for batch processing
t_tensor = torch.full((batch_size,), t.item(), dtype=torch.long, device=device)
t_next_tensor = torch.full((batch_size,), t_next.item(), dtype=torch.long, device=device)
x = self.ddim_sample(x, t_tensor, t_next_tensor, attr, prototype, start_end_info, eta)
return x
# --------------------- Unified Sampling Entry Point ---------------------
def sample(self, test_x0, attr, prototype, sampling_type='ddpm',
ddim_num_steps=50, ddim_eta=0.0, *args, **kwargs):
"""Generate samples using either DDPM or DDIM.
Args:
test_x0 (torch.Tensor): Tensor containing ground truth data, primarily used for start/end points.
attr (torch.Tensor): Attributes for conditioning.
prototype (torch.Tensor): Prototypes for conditioning.
sampling_type (str, optional): 'ddpm' or 'ddim'. Defaults to 'ddpm'.
ddim_num_steps (int, optional): Number of steps for DDIM sampling. Defaults to 50.
ddim_eta (float, optional): Eta for DDIM sampling. Defaults to 0.0.
"""
self.model.eval() # Set model to evaluation mode for sampling
with torch.no_grad():
if sampling_type == 'ddpm':
return self.p_sample_loop(test_x0, attr, prototype, *args, **kwargs)
elif sampling_type == 'ddim':
return self.ddim_sample_loop(test_x0, attr, prototype,
num_steps=ddim_num_steps, eta=ddim_eta)
else:
raise ValueError(f"Unsupported sampling_type: {sampling_type}. Choose 'ddpm' or 'ddim'.")
#----------------------------------training----------------------------------#
def q_sample(self, x_start, t, noise):
"""Sample x_t from x_0 using q(x_t | x_0) = sqrt(alpha_bar_t)x_0 + sqrt(1-alpha_bar_t)noise."""
sample = (
extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
)
# Keep start and end points fixed during noising process as well (for interpolation task)
sample[:, :, 0] = x_start[:, :, 0]
sample[:, :, -1] = x_start[:, :, -1]
return sample
def p_losses(self, x_start, attr, prototype, t, weights=1.0):
"""Calculate the diffusion loss (typically MSE between predicted noise and actual noise).
This is common for both DDPM and DDIM training.
"""
noise = torch.randn_like(x_start)
# For interpolation, noise is not added to the fixed start/end points
noise[:, :, 0] = 0
noise[:, :, -1] = 0
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
x_recon = self.model(x_noisy, t, attr, prototype) # Model predicts noise or x0
assert noise.shape == x_recon.shape
if self.predict_epsilon:
# Loss on the predicted noise, excluding start/end points
loss = self.loss_fn(x_recon[:, :, 1:-1], noise[:, :, 1:-1], weights)
else:
# Loss on the predicted x0, excluding start/end points
loss = self.loss_fn(x_recon[:, :, 1:-1], x_start[:, :, 1:-1], weights)
return loss
def trainer(self, x, attr, prototype, weights=1.0):
"""Performs a single training step. Common for DDPM and DDIM."""
self.model.train() # Set model to training mode
batch_size = len(x)
t = torch.randint(0, self.T, (batch_size,), device=x.device).long() # Sample random timesteps on the same device as x
return self.p_losses(x, attr, prototype, t, weights)
def forward(self, test_x0, attr, prototype, sampling_type='ddpm',
ddim_num_steps=50, ddim_eta=0.0, *args, **kwargs):
"""Default forward pass calls the unified sampling method."""
return self.sample(test_x0, attr, prototype,
sampling_type=sampling_type,
ddim_num_steps=ddim_num_steps,
ddim_eta=ddim_eta,
*args, **kwargs)
|