File size: 12,966 Bytes
3a521ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import os
import torch
import datetime
import shutil
from pathlib import Path
import argparse
from types import SimpleNamespace
import sys
import numpy as np


from conf import config as config_module # Corrected alias
from utils.logger import Logger, log_info
from utils.utils import set_seed, ddp_setup, destroy_process_group, get_data_paths
from dataset.data_util import TrajectoryDataset
from torch.utils.data import DataLoader
from diffProModel.Diffusion import Diffusion
from diffProModel.protoTrans import TrajectoryTransformer


from train import train_main 
from test import test_model

def setup_experiment_environment(base_exp_dir, exp_name_with_timestamp, config_to_save, files_to_copy=None):
    """Sets up the experiment directory structure and saves essential files."""
    exp_dir = base_exp_dir / exp_name_with_timestamp
    results_dir = exp_dir / 'results'
    models_dir = exp_dir / 'models' # Unified models dir, not timestamped sub-dir by default here
    logs_dir = exp_dir / 'logs'
    code_save_dir = exp_dir / 'code_snapshot'

    os.makedirs(results_dir, exist_ok=True)
    os.makedirs(models_dir, exist_ok=True)
    os.makedirs(logs_dir, exist_ok=True)
    os.makedirs(code_save_dir, exist_ok=True)

    # Save configuration
    # (Convert SimpleNamespace to dict for easier saving if needed, or save as text)
    with open(exp_dir / 'config_used.txt', 'w') as f:
        import json
        # Convert SimpleNamespace to dict for JSON serialization
        def ns_to_dict(ns):
            if isinstance(ns, SimpleNamespace):
                return {k: ns_to_dict(v) for k, v in ns.__dict__.items()}
            elif isinstance(ns, dict):
                return {k: ns_to_dict(v) for k, v in ns.items()}
            elif isinstance(ns, list):
                return [ns_to_dict(i) for i in ns]
            return ns
        config_dict = ns_to_dict(config_to_save)
        json.dump(config_dict, f, indent=4)

    # Copy essential code files
    if files_to_copy:
        for file_path_str in files_to_copy:
            try:
                file_path = Path(file_path_str)
                if file_path.exists():
                    shutil.copy(file_path, code_save_dir)
                else:
                    print(f"Warning: File to copy not found: {file_path_str}") # Use logger if available
            except Exception as e:
                print(f"Warning: Could not copy file {file_path_str}: {e}")
    
    return exp_dir, models_dir, logs_dir, results_dir

def main():
    parser = argparse.ArgumentParser(description='Unified Trajectory Interpolation - Training with Periodic Validation')
    parser.add_argument('--sampling_type', type=str, default='ddpm', choices=['ddpm', 'ddim'], 
                        help='Diffusion sampling type (ddpm or ddim) - influences periodic validation if DDIM is chosen, and experiment naming.')
    parser.add_argument('--config_module_path', type=str, default='conf.config', 
                        help='Python module path for base configuration (e.g., conf.config)')
    parser.add_argument('--exp_name', type=str, default='traj_interp_exp', 
                        help='Base name for the experiment directory')
    parser.add_argument('--seed', type=int, default=42, help='Random seed')
    parser.add_argument('--device_id', type=int, default=0, help='CUDA device ID to use')
    parser.add_argument('--distributed', action='store_true', help='Enable distributed training (DDP)')
    
    parser.add_argument('--ddim_steps', type=int, default=50, help='Number of DDIM sampling steps for periodic validation')
    parser.add_argument('--ddim_eta', type=float, default=0.0, 
                        help='DDIM stochasticity parameter for periodic validation (0=deterministic, 1=DDPM-like)')
    
    parser.add_argument('--debug', action='store_true', help='Enable debug mode for more detailed logs')
    
    # 添加测试模式相关参数
    parser.add_argument('--mode', type=str, default='train', choices=['train', 'test'],
                        help='运行模式:训练或测试')
    parser.add_argument('--model_path', type=str, default=None,
                        help='测试模式下,指定要加载的模型路径')
    parser.add_argument('--model_epoch', type=int, default=None,
                        help='测试模式下,指定要加载的模型epoch')

    args = parser.parse_args()

    # --- Basic Setup ---
    if args.distributed:
        ddp_setup(args.distributed) # Sets LOCAL_RANK env var if not already set by launcher
        local_rank = int(os.environ.get('LOCAL_RANK', 0))
    else:
        local_rank = 0
    
    if not args.distributed or local_rank == 0: # Setup master process first or if not distributed
        print(f"Running on device: cuda:{args.device_id}" if torch.cuda.is_available() else "Running on CPU")
    
    if torch.cuda.is_available():
        torch.cuda.set_device(args.device_id if not args.distributed else local_rank)
    
    set_seed(args.seed + local_rank) # Ensure different seeds for different processes in DDP for some operations

    # --- Load Configuration ---
    try:
        base_config_dict = config_module.load_config() # from conf.config import load_config
    except Exception as e:
        print(f"Error loading base configuration from {args.config_module_path}: {e}")
        sys.exit(1)

    # Handle both dict and SimpleNamespace return from load_config()
    if isinstance(base_config_dict, dict):
        cfg_ns = {k: SimpleNamespace(**v) for k, v in base_config_dict.items()}
        config = SimpleNamespace(**cfg_ns)
    else:
        # load_config() already returned a SimpleNamespace
        config = base_config_dict

    # Update config with command-line arguments
    config.debug = args.debug
    config.training.dis_gpu = args.distributed
    config.sampling.type = args.sampling_type
    config.sampling.ddim_steps = args.ddim_steps
    config.sampling.ddim_eta = args.ddim_eta
    config.device_id = args.device_id # Pass device_id for train_main
    # Ensure other necessary fields exist in config (add defaults if not in config.py)
    if not hasattr(config, 'model'): config.model = SimpleNamespace()
    if not hasattr(config.model, 'loss_type'): config.model.loss_type = 'l1' # Default
    if not hasattr(config.training, 'learning_rate'): config.training.learning_rate = 2e-4
    if not hasattr(config.training, 'warmup_epochs'): config.training.warmup_epochs = 10
    if not hasattr(config.training, 'contrastive_margin'): config.training.contrastive_margin = 1.0
    if not hasattr(config.training, 'use_amp'): config.training.use_amp = True 
    if not hasattr(config.training, 'kmeans_memory_size'): config.training.kmeans_memory_size = 10 # Batches
    if not hasattr(config.training, 'ce_loss_weight'): config.training.ce_loss_weight = 0.1
    if not hasattr(config.training, 'diffusion_loss_weight'): config.training.diffusion_loss_weight = 1.0
    if not hasattr(config.training, 'contrastive_loss_weight'): config.training.contrastive_loss_weight = 1.0

    # --- Setup Experiment Environment (only on rank 0 if DDP) ---
    timestamp_str = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
    # Include sampling type in experiment name for clarity
    exp_name_ts = f"{args.exp_name}_{config.data.dataset}_len{config.data.traj_length}_{args.sampling_type}_{timestamp_str}"
    
    exp_dir, models_save_dir, logs_dir, results_dir = Path("."), Path("."), Path("."), Path(".") # Defaults for non-rank0
    if local_rank == 0:
        root_dir = Path(__file__).resolve().parent # Project root
        base_experiment_path = root_dir / "Experiments" # Changed from "Backups"
        
        files_to_copy_snapshot = [
            'main.py', 'train.py', 'test.py', 'conf/config.py',
            'diffProModel/Diffusion.py', 'diffProModel/protoTrans.py', 'diffProModel/loss.py',
            'utils/utils.py', 'utils/logger.py', 'utils/metric.py', 'dataset/data_util.py'
        ]
        exp_dir, models_save_dir, logs_dir, results_dir = setup_experiment_environment(
            base_experiment_path, exp_name_ts, config, files_to_copy_snapshot
        )
    
    # Logger setup (after exp_dir is known by all processes if DDP, or just for rank 0)
    logger = None
    if local_rank == 0:
        log_file_path = logs_dir / f"log_{timestamp_str}.txt"
        logger = Logger(
            name=exp_name_ts,
            log_path=log_file_path,
            colorize=True,
            level="debug" if args.debug else "info"
        )
        logger.info(f"Experiment directory: {exp_dir}")
        log_info(config, logger) # Log the configuration details
        logger.info(f"Using sampling type for periodic validation: {args.sampling_type}")
        if args.sampling_type == 'ddim':
            logger.info(f"DDIM Steps for validation: {args.ddim_steps}, Eta for validation: {args.ddim_eta}")

    # Barrier to ensure exp_dir is created by rank 0 before other ranks proceed if DDP
    if args.distributed:
        torch.distributed.barrier()

    # 设置设备
    device = torch.device(f"cuda:{args.device_id}" if torch.cuda.is_available() else "cpu")

    if args.mode == 'train':
        # --- Main Execution: Call Training (which includes periodic validation) ---
        if logger and local_rank == 0: 
            logger.info("Starting training with periodic validation...")
        
        train_main(config, logger, exp_dir, timestamp_str) 
    else:  # 测试模式
        if logger and local_rank == 0:
            logger.info("Starting model testing...")
            logger.info(f"Loading model from: {args.model_path}")
            logger.info(f"Using epoch: {args.model_epoch}")

        # 加载数据
        test_dataset = TrajectoryDataset(
            file_paths=get_data_paths(config.data, for_train=False),
            traj_length=config.data.traj_length
        )
        test_dataloader = DataLoader(
            test_dataset,
            batch_size=config.sampling.batch_size,
            shuffle=False,
            num_workers=config.data.num_workers if isinstance(config.data.num_workers, int) else 4,
            pin_memory=True
        )

        # 初始化模型
        diffusion_model = Diffusion(
            loss_type=config.model.loss_type,
            config=config,
            clip_denoised=True,
            predict_epsilon=True
        ).to(device)
        short_samples_model = TrajectoryTransformer(
            input_dim=config.trans.input_dim,
            embed_dim=config.trans.embed_dim,
            num_layers=config.trans.num_layers,
            num_heads=config.trans.num_heads,
            forward_dim=config.trans.forward_dim,
            seq_len=config.data.traj_length,
            n_cluster=config.trans.N_CLUSTER,
            dropout=config.trans.dropout
        ).to(device)

        # 加载模型权重 - 自动检测最新的timestamp目录
        models_base_dir = Path(args.model_path) / "models"
        # 获取models目录下的所有子目录,选择最新的timestamp目录
        timestamp_dirs = [d for d in models_base_dir.iterdir() if d.is_dir()]
        if not timestamp_dirs:
            raise FileNotFoundError(f"No model timestamp directories found in {models_base_dir}")
        
        # 按时间戳排序,选择最新的
        latest_timestamp_dir = sorted(timestamp_dirs, key=lambda x: x.name)[-1]
        model_dir = latest_timestamp_dir
        
        diffusion_model_path = model_dir / f"diffusion_model_epoch_{args.model_epoch}.pt"
        transformer_model_path = model_dir / f"transformer_epoch_{args.model_epoch}.pt"
        prototypes_path = model_dir / f"prototypes_transformer_epoch_{args.model_epoch}.npy"

        if logger and local_rank == 0:
            logger.info(f"Loading diffusion model from: {diffusion_model_path}")
            logger.info(f"Loading transformer model from: {transformer_model_path}")
            logger.info(f"Loading prototypes from: {prototypes_path}")

        diffusion_model.load_state_dict(torch.load(diffusion_model_path, map_location=device))
        short_samples_model.load_state_dict(torch.load(transformer_model_path, map_location=device))
        prototypes = torch.from_numpy(np.load(prototypes_path)).float().to(device)

        # 运行测试
        with torch.no_grad():
            test_model(
                test_dataloader=test_dataloader,
                diffusion_model=diffusion_model,
                short_samples_model=short_samples_model,
                config=config,
                epoch=args.model_epoch,
                prototypes=prototypes,
                device=device,
                logger=logger,
                exp_dir=exp_dir
            )
    
    if args.distributed:
        if torch.distributed.is_initialized():
            destroy_process_group()
    
    if local_rank == 0 and logger: 
        logger.info("Main script execution finished.")

if __name__ == "__main__":
    main()