File size: 8,618 Bytes
25b6d23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import pandas as pd
import h5py
import numpy as np
from tqdm import tqdm
import os

def create_h5_temporal_split(csv_path, train_h5_path, test_h5_path, train_ratio=0.8):
    """
    使用时间分割策略:每个用户的轨迹按时间分割,前80%用于训练,后20%用于测试
    这样可以测试模型对同一用户未来轨迹的预测能力,同时保留所有用户的路径模式
    """
    print(f"Loading data from {csv_path}...")
    try:
        df = pd.read_csv(csv_path, parse_dates=['datetime'])
    except Exception as e:
        print(f"Error reading or parsing CSV: {e}")
        return

    print("Sorting data by user and time...")
    df.sort_values(by=['userid', 'datetime'], inplace=True)

    all_user_ids = df['userid'].unique()
    print(f"Total users: {len(all_user_ids)}")
    print(f"Using temporal split: {train_ratio*100:.0f}% for training, {(1-train_ratio)*100:.0f}% for testing")

    # 为训练集和测试集创建HDF5文件
    train_sample_count = 0
    test_sample_count = 0
    
    with h5py.File(train_h5_path, 'w') as train_h5f, h5py.File(test_h5_path, 'w') as test_h5f:
        
        for user_id in tqdm(all_user_ids, desc="Processing users"):
            user_df = df[df['userid'] == user_id].sort_values('datetime')
            
            # 按时间分割:前train_ratio用于训练,后面用于测试
            split_point = int(len(user_df) * train_ratio)
            
            train_user_df = user_df.iloc[:split_point]
            test_user_df = user_df.iloc[split_point:]
            
            # 处理训练数据(如果有足够的数据点)
            if len(train_user_df) > 0:
                timestamps = train_user_df['datetime'].apply(lambda x: x.timestamp()).values
                latitudes = train_user_df['lat'].values
                longitudes = train_user_df['lng'].values

                train_user_group = train_h5f.create_group(f"{user_id}_train")
                train_user_group.create_dataset('hours', data=timestamps, dtype='float64')
                train_user_group.create_dataset('latitudes', data=latitudes, dtype='float64')
                train_user_group.create_dataset('longitudes', data=longitudes, dtype='float64')
                train_sample_count += len(timestamps)
            
            # 处理测试数据(如果有足够的数据点)
            if len(test_user_df) > 0:
                timestamps = test_user_df['datetime'].apply(lambda x: x.timestamp()).values
                latitudes = test_user_df['lat'].values
                longitudes = test_user_df['lng'].values

                test_user_group = test_h5f.create_group(f"{user_id}_test")
                test_user_group.create_dataset('hours', data=timestamps, dtype='float64')
                test_user_group.create_dataset('latitudes', data=latitudes, dtype='float64')
                test_user_group.create_dataset('longitudes', data=longitudes, dtype='float64')
                test_sample_count += len(timestamps)
    
    print(f"\nData processing complete!")
    print(f"Training samples: {train_sample_count}")
    print(f"Testing samples: {test_sample_count}")
    print(f"Train file saved to: {train_h5_path}")
    print(f"Test file saved to: {test_h5_path}")

def create_h5_mixed_split(csv_path, train_h5_path, test_h5_path, full_test_users=5, temporal_ratio=0.8):
    """
    混合分割策略:
    - 少数用户完全作为测试集(测试跨用户泛化)
    - 其余用户按时间分割(测试时间泛化)
    """
    print(f"Loading data from {csv_path}...")
    try:
        df = pd.read_csv(csv_path, parse_dates=['datetime'])
    except Exception as e:
        print(f"Error reading or parsing CSV: {e}")
        return

    print("Sorting data by user and time...")
    df.sort_values(by=['userid', 'datetime'], inplace=True)

    all_user_ids = df['userid'].unique()
    
    # 随机选择几个用户完全作为测试集
    np.random.seed(42)  # 固定随机种子确保可重复
    full_test_user_ids = set(np.random.choice(all_user_ids, size=full_test_users, replace=False))
    temporal_split_user_ids = set(all_user_ids) - full_test_user_ids
    
    print(f"Total users: {len(all_user_ids)}")
    print(f"Users for temporal split: {len(temporal_split_user_ids)}")
    print(f"Users completely in test set: {len(full_test_user_ids)}")
    print(f"Full test users: {sorted(full_test_user_ids)}")

    train_sample_count = 0
    test_sample_count = 0
    
    with h5py.File(train_h5_path, 'w') as train_h5f, h5py.File(test_h5_path, 'w') as test_h5f:
        
        # 处理时间分割的用户
        for user_id in tqdm(temporal_split_user_ids, desc="Processing temporal split users"):
            user_df = df[df['userid'] == user_id].sort_values('datetime')
            
            split_point = int(len(user_df) * temporal_ratio)
            train_user_df = user_df.iloc[:split_point]
            test_user_df = user_df.iloc[split_point:]
            
            # 训练数据
            if len(train_user_df) > 0:
                timestamps = train_user_df['datetime'].apply(lambda x: x.timestamp()).values
                latitudes = train_user_df['lat'].values
                longitudes = train_user_df['lng'].values

                train_user_group = train_h5f.create_group(f"{user_id}_temporal")
                train_user_group.create_dataset('hours', data=timestamps, dtype='float64')
                train_user_group.create_dataset('latitudes', data=latitudes, dtype='float64')
                train_user_group.create_dataset('longitudes', data=longitudes, dtype='float64')
                train_sample_count += len(timestamps)
            
            # 测试数据
            if len(test_user_df) > 0:
                timestamps = test_user_df['datetime'].apply(lambda x: x.timestamp()).values
                latitudes = test_user_df['lat'].values
                longitudes = test_user_df['lng'].values

                test_user_group = test_h5f.create_group(f"{user_id}_temporal")
                test_user_group.create_dataset('hours', data=timestamps, dtype='float64')
                test_user_group.create_dataset('latitudes', data=latitudes, dtype='float64')
                test_user_group.create_dataset('longitudes', data=longitudes, dtype='float64')
                test_sample_count += len(timestamps)
        
        # 处理完全作为测试集的用户
        for user_id in tqdm(full_test_user_ids, desc="Processing full test users"):
            user_df = df[df['userid'] == user_id].sort_values('datetime')
            
            timestamps = user_df['datetime'].apply(lambda x: x.timestamp()).values
            latitudes = user_df['lat'].values
            longitudes = user_df['lng'].values

            test_user_group = test_h5f.create_group(f"{user_id}_full")
            test_user_group.create_dataset('hours', data=timestamps, dtype='float64')
            test_user_group.create_dataset('latitudes', data=latitudes, dtype='float64')
            test_user_group.create_dataset('longitudes', data=longitudes, dtype='float64')
            test_sample_count += len(timestamps)
    
    print(f"\nMixed split processing complete!")
    print(f"Training samples: {train_sample_count}")
    print(f"Testing samples: {test_sample_count}")
    print(f"Train file saved to: {train_h5_path}")
    print(f"Test file saved to: {test_h5_path}")

if __name__ == '__main__':
    # 配置
    # 直接使用新的轨迹数据文件
    CSV_DATA_PATH = 'data/matched_trajectory_data.csv'
    output_dir = 'data'
    
    print(f"将使用输入文件: {CSV_DATA_PATH}")
    print("将使用时间分割策略生成 train_temporal.h5 和 test_temporal.h5")
    
    # 定义输出路径
    TRAIN_H5_PATH = os.path.join(output_dir, 'train_temporal.h5')
    TEST_H5_PATH = os.path.join(output_dir, 'test_temporal.h5')
    
    # 运行转换
    create_h5_temporal_split(CSV_DATA_PATH, TRAIN_H5_PATH, TEST_H5_PATH)
    
    # 验证生成的文件
    print("\n验证生成的HDF5文件...")
    try:
        with h5py.File(TRAIN_H5_PATH, 'r') as h5f:
            print(f"训练集包含 {len(h5f.keys())} 个用户组")
            if h5f.keys():
                sample_key = list(h5f.keys())[0]
                sample_group = h5f[sample_key]
                print(f"示例用户组 '{sample_key}':")
                for dset_name in sample_group.keys():
                    dset = sample_group[dset_name]
                    print(f"  - {dset_name}: {dset.shape}")
    except Exception as e:
        print(f"验证文件时出错: {e}")