File size: 15,816 Bytes
766d56c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import os
import torch
import numpy as np
from tqdm import tqdm
import torch.nn.functional as F

from utils.metric import *
from dataset.data_util import MinMaxScaler
from utils.utils import mask_data_general, ddp_setup, continuous_mask_data, continuous_time_based_mask, mask_multiple_segments
# Diffusion model will be imported directly in the main script that calls this test function.
# from diffProModel.Diffusion import Diffusion # No, pass model as argument

def test_model(test_dataloader, diffusion_model, short_samples_model, config, epoch, 
               prototypes, device, logger, exp_dir):
    """
    Test the unified Diffusion model (DDPM or DDIM) on the test dataset.
    
    Args:
        test_dataloader: DataLoader for test data.
        diffusion_model: The unified diffusion model (instance of diffProModel.Diffusion.Diffusion).
        short_samples_model: Trajectory transformer model for feature extraction.
        config: Configuration object.
        epoch: Current epoch number (or identifier for the test run).
        prototypes: Prototype vectors (e.g., from TrajectoryTransformer or K-Means).
        device: Device to run the model on (already determined by the caller).
        logger: Logger object.
        exp_dir: Experiment directory path.
    """
    # Determine distributed status and local_rank first
    distributed = config.training.dis_gpu
    local_rank = 0
    if distributed:
        # If DDP is active, LOCAL_RANK should be set by the environment.
        # ddp_setup should have been called by the parent process (e.g., train_main or main for DDP launch)
        # test_model itself typically does not re-initialize DDP.
        try:
            local_rank = int(os.environ.get('LOCAL_RANK', 0))
        except ValueError:
            if logger: logger.warning("LOCAL_RANK environment variable not a valid integer. Defaulting to 0.")
            local_rank = 0 
    # The 'device' argument passed to this function should be the correct one to use.

    thresholds = [i for i in range(1000, 11000, 1000)] # Thresholds for TC metric
    # Initialize lists to store metrics for each batch
    mtd_list, mppe_list, maepp_list, maeps_list, aptc_list, avg_aptc_list, max_td_list = [], [], [], [], [], [], []

    # Get sampling parameters from config (assuming they are in config.sampling)
    sampling_type = getattr(config.sampling, 'type', 'ddpm') # Default to ddpm if not specified
    ddim_steps = getattr(config.sampling, 'ddim_steps', 50)
    ddim_eta = getattr(config.sampling, 'ddim_eta', 0.0)
    debug_mode = getattr(config, 'debug', False) # General debug flag

    if logger and local_rank == 0: # Ensure logger operations happen on rank 0 if distributed
        logger.info(f"Testing with sampling_type: {sampling_type} for epoch {epoch}")
        if sampling_type == 'ddim':
            logger.info(f"DDIM steps: {ddim_steps}, DDIM eta: {ddim_eta}")

    diffusion_model.eval() # Ensure diffusion model is in eval mode
    short_samples_model.eval() # Ensure feature extractor is in eval mode

    pbar_desc = f"Epoch {epoch} Test Progress ({sampling_type.upper()})"
    for batch_idx, (abs_time, lat, lng) in enumerate(tqdm(test_dataloader, desc=pbar_desc, disable=(local_rank != 0))):
        
        if debug_mode and logger and local_rank == 0:
            logger.info(f"Batch {batch_idx} - Input shapes: abs_time {abs_time.shape}, lat {lat.shape}, lng {lng.shape}")
            logger.info(f"Input data stats - abs_time: min={abs_time.min().item():.4f}, max={abs_time.max().item():.4f}, " +
                        f"lat: min={lat.min().item():.4f}, max={lat.max().item():.4f}, " +
                        f"lng: min={lng.min().item():.4f}, max={lng.max().item():.4f}")
        
        if torch.isnan(abs_time).any() or torch.isnan(lat).any() or torch.isnan(lng).any():
            if logger and local_rank == 0: logger.error(f"Batch {batch_idx} - NaN detected in input data!")
            continue

        # Prepare input tensor (ground truth for start/end points and for scaling)
        # This testx_raw is used for scaler fitting and as test_x0 for diffusion model
        testx_raw = torch.stack([abs_time, lat, lng], dim=-1).to(device) 

        # Use global normalization parameters for consistency
        scaler = MinMaxScaler(global_params_file='./data/robust_normalization_params.json')
        scaler.fit(testx_raw) # This does nothing for global scaler, but maintains interface
        testx_scaled = scaler.transform(testx_raw) # Scale data
        
        if debug_mode and logger and local_rank == 0:
            logger.info(f"Scaler min: {scaler.min_val.flatten().cpu().numpy()}, max: {scaler.max_val.flatten().cpu().numpy()}")
        
        if torch.isnan(testx_scaled).any():
            if logger and local_rank == 0: 
                logger.error(f"Batch {batch_idx} - NaN detected after scaling!")
                if torch.any(scaler.max_val == scaler.min_val):
                    logger.error("Division by zero in scaler possible: max_val equals min_val for some features.")
            continue
            
        # Permute for diffusion model input: (batch_size, num_features, traj_length)
        testx_scaled_permuted = testx_scaled.permute(0, 2, 1)

        # Apply masking
        if config.masking_strategy == 'general':
            masked_condition_permuted = mask_data_general(testx_scaled_permuted)
        elif config.masking_strategy == 'continuous':
            masked_condition_permuted = continuous_mask_data(testx_scaled_permuted, config.mask_ratio)
        elif config.masking_strategy == 'time_based':
            masked_condition_permuted = continuous_time_based_mask(testx_scaled_permuted, points_to_mask=config.mask_points_per_hour)
        elif config.masking_strategy == 'multi_segment':
            masked_condition_permuted = mask_multiple_segments(testx_scaled_permuted, points_per_segment=config.mask_segments)
        else:
            raise ValueError(f"Unknown masking strategy: {config.masking_strategy}")

        masked_condition = masked_condition_permuted.permute(0, 2, 1)

        with torch.no_grad():
            _, query_features = short_samples_model(masked_condition)
            
            if torch.isnan(query_features).any():
                if logger and local_rank == 0: logger.error(f"Batch {batch_idx} - NaN detected in query_features!")
                continue
            if torch.isnan(prototypes).any():
                if logger and local_rank == 0: logger.error(f"Batch {batch_idx} - NaN detected in provided prototypes!")
                continue
                
            # Match query features with prototypes (e.g., via cosine similarity and softmax attention)
            # This logic should align with how matched_prototypes are generated during training
            cos_sim = F.cosine_similarity(query_features.unsqueeze(1), prototypes.unsqueeze(0), dim=-1)
            if torch.isnan(cos_sim).any():
                if logger and local_rank == 0: logger.error(f"Batch {batch_idx} - NaN detected in cos_sim!")
                continue
            
            # Using the same attention-weighted sum as in the unified training script
            d_k = query_features.size(-1)
            scaled_cos_sim = F.softmax(cos_sim / np.sqrt(d_k), dim=-1) 
            matched_prototypes_for_diffusion = torch.matmul(scaled_cos_sim, prototypes).to(device)
            
            if torch.isnan(matched_prototypes_for_diffusion).any():
                if logger and local_rank == 0: logger.error(f"Batch {batch_idx} - NaN detected in matched_prototypes!")
                continue
            
            if debug_mode and logger and local_rank == 0:
                logger.info(f"Sampling with type: {sampling_type}, DDIM steps: {ddim_steps}, eta: {ddim_eta}")
                logger.info(f"Input to diffusion model (testx_scaled_permuted) shape: {testx_scaled_permuted.shape}, "
                            f"masked condition (masked_condition_permuted) shape: {masked_condition_permuted.shape}, "
                            f"matched prototypes shape: {matched_prototypes_for_diffusion.shape}")
            
            try:

                pred_x0_scaled = diffusion_model.sample(
                    test_x0=testx_scaled_permuted, # Ground truth (scaled) for start/end points and reference
                    attr=masked_condition_permuted,    # Masked data for conditional U-Net input (GuideNet attr)
                    prototype=matched_prototypes_for_diffusion, # Matched prototypes for GuideNet
                    sampling_type=sampling_type,
                    ddim_num_steps=ddim_steps,
                    ddim_eta=ddim_eta
                )
                
                if torch.isnan(pred_x0_scaled).any():
                    if logger and local_rank == 0: logger.error(f"Batch {batch_idx} - NaN detected in Diffusion model output!")
                    continue
                    
            except Exception as e:
                if logger and local_rank == 0: logger.error(f"Exception during Diffusion model sampling: {str(e)}")
                import traceback
                if logger and local_rank == 0: logger.error(traceback.format_exc())
                continue

        # pred_x0_scaled is (batch_size, num_features, traj_length)
        pred_x0_scaled_unpermuted = pred_x0_scaled.permute(0, 2, 1) 
        
        if debug_mode and logger and local_rank == 0:
            logger.info(f"pred_x0_scaled_unpermuted stats before inverse_transform: min={pred_x0_scaled_unpermuted.min().item():.4f}, max={pred_x0_scaled_unpermuted.max().item():.4f}")
        
        if (pred_x0_scaled_unpermuted < 0).any() or (pred_x0_scaled_unpermuted > 1).any():
            if logger and local_rank == 0: 
                logger.warning(f"Batch {batch_idx} - Values outside [0,1] in pred_x0_scaled: min={pred_x0_scaled_unpermuted.min().item():.4f}, max={pred_x0_scaled_unpermuted.max().item():.4f}. Clamping.")
            pred_x0_scaled_unpermuted = torch.clamp(pred_x0_scaled_unpermuted, 0, 1)
        
        # Inverse transform to original data scale - ensure this happens on the correct device
        pred_x0_final = scaler.inverse_transform(pred_x0_scaled_unpermuted) 
        
        ground_truth_final = testx_raw.cpu() 
        
        if torch.isnan(pred_x0_final).any() or torch.isnan(ground_truth_final).any():
            if logger and local_rank == 0: logger.error(f"Batch {batch_idx} - NaN detected after inverse transform!")
            continue
            
        # Move to CPU before converting to NumPy for metric calculation
        pred_x0_np = pred_x0_final.cpu().numpy()
        ground_truth_np = ground_truth_final.numpy()
        
        if debug_mode and logger and local_rank == 0:
            logger.info(f"Shapes for metrics: pred_x0_np {pred_x0_np.shape}, ground_truth_np {ground_truth_np.shape}")
            logger.info(f"pred_x0_np stats: min={np.min(pred_x0_np):.4f}, max={np.max(pred_x0_np):.4f}")
            logger.info(f"ground_truth_np stats: min={np.min(ground_truth_np):.4f}, max={np.max(ground_truth_np):.4f}")

        try:
            mtd_list.append(mean_trajectory_deviation(pred_x0_np, ground_truth_np))
            mppe_list.append(mean_point_to_point_error(pred_x0_np, ground_truth_np))
            maepp_list.append(mean_absolute_error_per_point(pred_x0_np[:, :, 0], ground_truth_np[:, :, 0]))
            maeps_list.append(mean_absolute_error_per_sample(pred_x0_np[:, :, 0], ground_truth_np[:, :, 0]))
            aptc_result, avg_aptc_result = trajectory_coverage(pred_x0_np, ground_truth_np, thresholds)
            aptc_list.append(aptc_result)
            avg_aptc_list.append(avg_aptc_result)
            max_td_list.append(max_trajectory_deviation(pred_x0_np, ground_truth_np))
        except Exception as e:
            if logger and local_rank == 0: logger.error(f"Exception during metric calculation in batch {batch_idx}: {str(e)}")
            if debug_mode and logger and local_rank == 0: import traceback; logger.error(traceback.format_exc())
            continue

        if debug_mode and batch_idx == 0 and os.environ.get('PROJECT_DEBUG_MODE', '0') == '1': # Use a distinct env var for this specific break
            if logger and local_rank == 0: logger.info("Project debug mode: Breaking after first test batch")
            break

    # Aggregate and log metrics (only on rank 0 if distributed)
    if local_rank == 0:
        mean_mtd = np.mean(mtd_list) if mtd_list else float('nan')
        mean_mppe = np.mean(mppe_list) if mppe_list else float('nan')
        mean_maepp = np.mean(maepp_list) if maepp_list else float('nan')
        mean_maeps = np.mean(maeps_list) if maeps_list else float('nan')
        mean_avg_aptc = np.mean(avg_aptc_list) if avg_aptc_list else float('nan')
        mean_max_td = np.max(max_td_list) if max_td_list else float('nan') # MaxTD is max over all samples
        mean_aptc_thresholds = {k: np.mean([d[k] for d in aptc_list if k in d]) for k in aptc_list[0]} if aptc_list else {f'TC@{thr}': float('nan') for thr in thresholds}

        if logger:
            logger.info(f"--- Test Results for Epoch {epoch} ({sampling_type.upper()}) ---")
            logger.info(f"Mean MTD: {mean_mtd:.4f}")
            logger.info(f"Mean MPPE: {mean_mppe:.4f}")
            logger.info(f"Mean MAEPP (time): {mean_maepp:.4f}")
            logger.info(f"Mean MAEPS (time): {mean_maeps:.4f}")
            logger.info(f"Mean AVG_TC: {mean_avg_aptc:.4f}")
            logger.info(f"Overall MaxTD: {mean_max_td:.4f}")
            for threshold_val, tc_val in mean_aptc_thresholds.items():
                logger.info(f"Mean {threshold_val}: {tc_val:.4f}")
            if sampling_type == 'ddim':
                 logger.info(f"DDIM sampling with {ddim_steps} steps, eta: {ddim_eta:.2f}")
            else:
                 logger.info(f"DDPM sampling with {config.diffusion.num_diffusion_timesteps} steps")

        # Save results to .npy files
        results_dir = exp_dir / 'results'
        os.makedirs(results_dir, exist_ok=True)
        sampling_prefix = f"{sampling_type.upper()}_"

        def save_metric_npy(metric_name, value, current_epoch):
            file_path = results_dir / f"{sampling_prefix}Test_mean_{metric_name}.npy"
            if np.isnan(value): return # Don't save if NaN
            if os.path.exists(file_path):
                try:
                    existing_data = np.load(file_path, allow_pickle=True).item()
                except: # Handle empty or corrupted file
                    existing_data = {}
                existing_data[current_epoch] = value
            else:
                existing_data = {current_epoch: value}
            np.save(file_path, existing_data)

        save_metric_npy('mtd', mean_mtd, epoch)
        save_metric_npy('mppe', mean_mppe, epoch)
        save_metric_npy('maepp', mean_maepp, epoch)
        save_metric_npy('maeps', mean_maeps, epoch)
        save_metric_npy('avg_aptc', mean_avg_aptc, epoch)
        save_metric_npy('max_td', mean_max_td, epoch)
        for threshold_key, tc_value in mean_aptc_thresholds.items():
            metric_key_name = threshold_key.replace('@', '_at_') # Sanitize for filename
            save_metric_npy(f"tc_{metric_key_name}", tc_value, epoch)
        
        if logger: logger.info(f"Saved test metrics to {results_dir}")
    
    # Ensure all processes finish if in DDP, though testing is usually single-process or rank 0 handles results
    if torch.distributed.is_initialized():
        torch.distributed.barrier() # Wait for all processes if any were involved

    return { # Return main metrics, could be useful for main script
        "mean_mtd": mean_mtd,
        "mean_mppe": mean_mppe
    } if local_rank == 0 else {}