File size: 14,207 Bytes
2842611 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
import os
import torch
from torch import nn
import torch.nn.functional as F
import itertools
import numpy as np
from tqdm import tqdm
from torch.utils.data import DataLoader, DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed import init_process_group, destroy_process_group
from torch.utils.data import TensorDataset
from datetime import datetime
from torch.optim.lr_scheduler import LambdaLR
import sys
from utils.logger import Logger
from dataset.data_util import MinMaxScaler, TrajectoryDataset
from utils.utils import IterativeKMeans, assign_labels, get_positive_negative_pairs, mask_data_general, get_data_paths, continuous_mask_data, continuous_time_based_mask, mask_multiple_segments
from diffProModel.loss import ContrastiveLoss
from diffProModel.protoTrans import TrajectoryTransformer
from diffProModel.Diffusion import Diffusion
from test import test_model # Import test_model
def ddp_setup(distributed):
"""Initialize the process group for distributed data parallel if distributed is True."""
if distributed:
if not torch.distributed.is_initialized():
init_process_group(backend="nccl")
torch.cuda.set_device(int(os.environ['LOCAL_RANK']))
def setup_model_save_directory(exp_dir, timestamp):
"""Set up the directory for saving model checkpoints."""
model_save_path = exp_dir / 'models' / (timestamp + '/')
os.makedirs(model_save_path, exist_ok=True)
return model_save_path
def lr_lambda_fn(current_epoch, warmup_epochs, total_epochs):
if current_epoch < warmup_epochs:
return float(current_epoch) / float(max(1, warmup_epochs))
return 0.5 * (1. + torch.cos(torch.tensor(torch.pi * (current_epoch - warmup_epochs) / float(total_epochs - warmup_epochs))))
def train_main(config, logger, exp_dir, timestamp_str):
"""Main function to run the training and testing pipeline for DDPM or DDIM."""
distributed = config.dis_gpu
local_rank = 0 # Default for non-DDP logging/master tasks
#logger.info(config.validation_freq) # 1
if distributed:
ddp_setup(distributed) # This also calls torch.cuda.set_device(os.environ['LOCAL_RANK'])
local_rank = int(os.environ['LOCAL_RANK'])
device = torch.device(f'cuda:{local_rank}')
else:
device_id_to_use = config.device_id
if torch.cuda.is_available():
torch.cuda.set_device(device_id_to_use)
device = torch.device(f'cuda:{device_id_to_use}')
else:
device = torch.device('cpu')
train_file_paths = get_data_paths(config.data, for_train=True)
diffusion_model = Diffusion(loss_type=config.model.loss_type, config=config).to(device)
lr = config.learning_rate
model_save_dir = setup_model_save_directory(exp_dir, timestamp_str)
train_dataset = TrajectoryDataset(train_file_paths, config.data.traj_length)
train_sampler = DistributedSampler(train_dataset, shuffle=True) if distributed else None
train_dataloader = DataLoader(train_dataset,
batch_size=config.batch_size,
shuffle=(train_sampler is None),
num_workers=config.data.num_workers,
drop_last=True,
sampler=train_sampler,
pin_memory=True)
# Create Test DataLoader
test_file_paths = get_data_paths(config.data, for_train=False)
test_dataset = TrajectoryDataset(test_file_paths, config.data.traj_length)
test_dataloader = DataLoader(test_dataset,
batch_size=config.sampling.batch_size, # Use sampling batch_size from config
shuffle=False,
num_workers=config.data.num_workers,
drop_last=False, # Typically False for full test set evaluation
pin_memory=True)
if distributed:
diffusion_model = DDP(diffusion_model, device_ids=[local_rank], find_unused_parameters=False)
short_samples_model = TrajectoryTransformer(
input_dim=config.trans.input_dim,
embed_dim=config.trans.embed_dim,
num_layers=config.trans.num_layers,
num_heads=config.trans.num_heads,
forward_dim=config.trans.forward_dim,
seq_len=config.data.traj_length,
n_cluster=config.trans.N_CLUSTER,
dropout=config.trans.dropout
).to(device)
if distributed:
short_samples_model = DDP(short_samples_model, device_ids=[local_rank], find_unused_parameters=False)
optim = torch.optim.AdamW(itertools.chain(diffusion_model.parameters(), short_samples_model.parameters()), lr=lr, foreach=False)
warmup_epochs = config.warmup_epochs
total_epochs = config.n_epochs
scheduler = LambdaLR(optim, lr_lambda=lambda epoch: lr_lambda_fn(epoch, warmup_epochs, total_epochs))
losses_dict = {}
contrastive_loss_fn = ContrastiveLoss(margin=config.contrastive_margin)
ce_loss_fn = nn.CrossEntropyLoss()
for epoch in range(1, config.n_epochs + 1):
if distributed:
train_sampler.set_epoch(epoch)
epoch_losses = []
previous_features_for_kmeans = []
if local_rank == 0:
logger.info(f"<----Epoch-{epoch}---->")
kmeans = IterativeKMeans(num_clusters=config.trans.N_CLUSTER, device=device)
pbar = tqdm(train_dataloader, desc=f"Epoch {epoch} Training", disable=(local_rank != 0))
for batch_idx, (abs_time, lat, lng) in enumerate(pbar):
trainx_raw = torch.stack([abs_time, lat, lng], dim=-1).to(device)
# Use global normalization parameters to avoid per-batch inconsistency
scaler = MinMaxScaler(global_params_file='./data/robust_normalization_params.json')
scaler.fit(trainx_raw) # This does nothing for global scaler, but maintains interface
trainx_scaled = scaler.transform(trainx_raw)
prototypes_from_transformer, features_for_kmeans_and_contrastive = short_samples_model(trainx_scaled)
if not previous_features_for_kmeans:
current_batch_prototypes_kmeans, _ = kmeans.fit(features_for_kmeans_and_contrastive.detach())
else:
features_memory = torch.cat(previous_features_for_kmeans, dim=0).detach()
current_batch_prototypes_kmeans, _ = kmeans.update(features_for_kmeans_and_contrastive.detach(), features_memory)
if len(previous_features_for_kmeans) < config.kmeans_memory_size:
previous_features_for_kmeans.append(features_for_kmeans_and_contrastive.detach())
elif config.kmeans_memory_size > 0 :
previous_features_for_kmeans.pop(0)
previous_features_for_kmeans.append(features_for_kmeans_and_contrastive.detach())
# Permute the dimensions to match the model's expected input shape
x0_for_diffusion = trainx_scaled.permute(0, 2, 1)
# Apply masking
if config.masking_strategy == 'general':
masked_x0_condition_diffusion = mask_data_general(x0_for_diffusion)
elif config.masking_strategy == 'continuous':
masked_x0_condition_diffusion = continuous_mask_data(x0_for_diffusion, config.mask_ratio)
elif config.masking_strategy == 'time_based':
masked_x0_condition_diffusion = continuous_time_based_mask(x0_for_diffusion, points_to_mask=config.mask_points_per_hour)
elif config.masking_strategy == 'multi_segment':
masked_x0_condition_diffusion = mask_multiple_segments(x0_for_diffusion, points_per_segment=config.mask_segments)
else:
raise ValueError(f"Unknown masking strategy: {config.masking_strategy}")
masked_x0_permuted_for_ssm = masked_x0_condition_diffusion.permute(0, 2, 1)
with torch.no_grad():
_, query_features_from_masked = short_samples_model(masked_x0_permuted_for_ssm)
cos_sim = F.cosine_similarity(query_features_from_masked.unsqueeze(1), prototypes_from_transformer.unsqueeze(0), dim=-1)
d_k = query_features_from_masked.size(-1)
scaled_cos_sim = F.softmax(cos_sim / np.sqrt(d_k), dim=-1)
matched_prototypes_for_diffusion = torch.matmul(scaled_cos_sim, prototypes_from_transformer)
positive_pairs, negative_pairs = get_positive_negative_pairs(prototypes_from_transformer, features_for_kmeans_and_contrastive)
contrastive_loss_val = contrastive_loss_fn(features_for_kmeans_and_contrastive, positive_pairs, negative_pairs)
contrastive_loss_val = contrastive_loss_val * config.contrastive_loss_weight
labels_from_transformer_protos = assign_labels(prototypes_from_transformer.detach(), features_for_kmeans_and_contrastive.detach()).long()
labels_from_kmeans = kmeans.predict(features_for_kmeans_and_contrastive.detach()).long()
ce_loss_val = torch.tensor(0.0, device=device)
if config.ce_loss_weight > 0:
logits_for_ce = features_for_kmeans_and_contrastive @ F.normalize(prototypes_from_transformer.detach(), dim=-1).T
ce_loss_val = ce_loss_fn(logits_for_ce, labels_from_kmeans)
ce_loss_val = ce_loss_val * config.ce_loss_weight
diffusion_model_ref = diffusion_model.module if distributed else diffusion_model
diffusion_loss_val = diffusion_model_ref.trainer(
x0_for_diffusion.float(),
masked_x0_condition_diffusion.float(),
matched_prototypes_for_diffusion.float(),
weights=config.diffusion_loss_weight
)
total_loss = diffusion_loss_val + ce_loss_val + contrastive_loss_val
optim.zero_grad()
total_loss.backward()
torch.nn.utils.clip_grad_norm_(itertools.chain(diffusion_model.parameters(), short_samples_model.parameters()), max_norm=1.0)
optim.step()
epoch_losses.append(total_loss.item())
if local_rank == 0:
pbar.set_postfix({
'Loss': total_loss.item(),
'Diff': diffusion_loss_val.item(),
'Cont': contrastive_loss_val.item(),
'CE': ce_loss_val.item(),
'LR': optim.param_groups[0]['lr']
})
avg_epoch_loss = sum(epoch_losses) / len(epoch_losses) if epoch_losses else 0
losses_dict[epoch] = avg_epoch_loss
scheduler.step()
if local_rank == 0:
logger.info(f"Epoch {epoch} Avg Loss: {avg_epoch_loss:.4f}")
logger.info(f"Current LR: {optim.param_groups[0]['lr']:.6f}")
if epoch % config.validation_freq == 0 and local_rank == 0:
# Save model snapshot
diffusion_state_dict = diffusion_model.module.state_dict() if distributed else diffusion_model.state_dict()
transformer_state_dict = short_samples_model.module.state_dict() if distributed else short_samples_model.state_dict()
torch.save(diffusion_state_dict, model_save_dir / f"diffusion_model_epoch_{epoch}.pt")
torch.save(transformer_state_dict, model_save_dir / f"transformer_epoch_{epoch}.pt")
if 'prototypes_from_transformer' in locals(): # Check if prototypes were generated in this epoch
np.save(model_save_dir / f"prototypes_transformer_epoch_{epoch}.npy", prototypes_from_transformer.detach().cpu().numpy())
all_losses_path = exp_dir / 'results' / 'all_epoch_losses.npy'
current_losses_to_save = {e: l for e, l in losses_dict.items()}
if os.path.exists(all_losses_path):
try:
existing_losses = np.load(all_losses_path, allow_pickle=True).item()
existing_losses.update(current_losses_to_save)
np.save(all_losses_path, existing_losses)
except Exception as e:
if logger: logger.error(f"Error loading/updating losses file: {e}. Saving current losses only.")
np.save(all_losses_path, current_losses_to_save)
else:
np.save(all_losses_path, current_losses_to_save)
if logger: logger.info(f"Saved model and prototypes snapshot at epoch {epoch} to {model_save_dir}")
# Periodic validation call
if logger: logger.info(f"--- Starting validation for epoch {epoch} ---")
diffusion_model_to_test = diffusion_model.module if distributed else diffusion_model
short_samples_model_to_test = short_samples_model.module if distributed else short_samples_model
diffusion_model_to_test.eval()
short_samples_model_to_test.eval()
current_prototypes_for_test = short_samples_model_to_test.prototypes.detach()
with torch.no_grad():
test_model(
test_dataloader=test_dataloader,
diffusion_model=diffusion_model_to_test,
short_samples_model=short_samples_model_to_test,
config=config,
epoch=epoch,
prototypes=current_prototypes_for_test,
device=device,
logger=logger,
exp_dir=exp_dir
)
diffusion_model_to_test.train()
short_samples_model_to_test.train()
if logger: logger.info(f"--- Finished validation for epoch {epoch} ---")
if distributed:
destroy_process_group()
if logger and local_rank == 0: # Ensure logger calls are rank-specific
logger.info("Training finished.")
|