import math import torch import torch.nn as nn import numpy as np import torch.nn.functional as F def get_timestep_embedding(timesteps, embedding_dim): """Build sinusoidal timestep embeddings. Args: timesteps (torch.Tensor): A 1-D Tensor of N timesteps. embedding_dim (int): The dimension of the embedding. Returns: torch.Tensor: N x embedding_dim Tensor of positional embeddings. """ assert len(timesteps.shape) == 1 half_dim = embedding_dim // 2 emb = np.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb) emb = emb.cuda() # Move embedding to CUDA device emb = timesteps.float()[:, None] * emb[None, :] emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) if embedding_dim % 2 == 1: # Zero pad if embedding_dim is odd emb = torch.nn.functional.pad(emb, (0, 1, 0, 0)) return emb class Attention(nn.Module): """A simple attention layer to get weights for attributes.""" def __init__(self, embedding_dim): super(Attention, self).__init__() self.fc = nn.Linear(embedding_dim, 1) def forward(self, x): # x shape: (batch_size, num_attributes, embedding_dim) weights = self.fc(x) # shape: (batch_size, num_attributes, 1) # Apply softmax along the attributes dimension to get attention weights. weights = F.softmax(weights, dim=1) return weights class WideAndDeep(nn.Module): """Network to combine attribute (start/end points) and prototype embeddings.""" def __init__(self, in_channels, embedding_dim=512): super(WideAndDeep, self).__init__() # Process start point and end point independently self.start_fc1 = nn.Linear(in_channels, embedding_dim) self.start_fc2 = nn.Linear(embedding_dim, embedding_dim) self.end_fc1 = nn.Linear(in_channels, embedding_dim) self.end_fc2 = nn.Linear(embedding_dim, embedding_dim) # Process prototype features self.prototype_fc1 = nn.Linear(512, embedding_dim) self.prototype_fc2 = nn.Linear(embedding_dim, embedding_dim) self.relu = nn.ReLU() def forward(self, attr, prototype): # attr shape: (batch_size, num_features, traj_length) # prototype shape: (batch_size, prototype_embedding_dim) - assuming N_CLUSTER is handled before or it's single prototype start_point = attr[:, :, 0].float() # First point in trajectory features end_point = attr[:, :, -1].float() # Last point in trajectory features # Process start point features start_x = self.start_fc1(start_point) start_x = self.relu(start_x) start_embed = self.start_fc2(start_x) # Process end point features end_x = self.end_fc1(end_point) end_x = self.relu(end_x) end_embed = self.end_fc2(end_x) # Combine the processed start and end point features attr_embed = start_embed + end_embed # Process prototype features proto_x = self.prototype_fc1(prototype) proto_x = self.relu(proto_x) proto_embed = self.prototype_fc2(proto_x) # Combine the processed attribute and prototype features combined_embed = attr_embed + proto_embed # Simple addition for combination return combined_embed def nonlinearity(x): # Swish activation function (SiLU) return x * torch.sigmoid(x) def Normalize(in_channels): """Group normalization.""" return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) class Upsample(nn.Module): """Upsampling layer, optionally with a 1D convolution.""" def __init__(self, in_channels, with_conv=True): super().__init__() self.with_conv = with_conv if self.with_conv: self.conv = torch.nn.Conv1d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) def forward(self, x): x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") # Upsample using nearest neighbor if self.with_conv: x = self.conv(x) return x class Downsample(nn.Module): """Downsampling layer, optionally with a 1D convolution.""" def __init__(self, in_channels, with_conv=True): super().__init__() self.with_conv = with_conv if self.with_conv: # No asymmetric padding in torch.nn.Conv1d, must do it ourselves via F.pad. self.conv = torch.nn.Conv1d(in_channels, in_channels, kernel_size=3, stride=2, padding=0) def forward(self, x): if self.with_conv: pad = (1, 1) # Padding for kernel_size=3, stride=2 to maintain roughly half size x = torch.nn.functional.pad(x, pad, mode="constant", value=0) x = self.conv(x) else: x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) # Avg pool if no conv return x class ResnetBlock(nn.Module): """Residual block for the U-Net.""" def __init__(self, in_channels, out_channels=None, conv_shortcut=False, dropout=0.1, temb_channels=512): super().__init__() self.in_channels = in_channels out_channels = in_channels if out_channels is None else out_channels self.out_channels = out_channels self.use_conv_shortcut = conv_shortcut self.norm1 = Normalize(in_channels) self.conv1 = torch.nn.Conv1d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) self.temb_proj = torch.nn.Linear(temb_channels, out_channels) self.norm2 = Normalize(out_channels) self.dropout = torch.nn.Dropout(dropout) self.conv2 = torch.nn.Conv1d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) if self.in_channels != self.out_channels: if self.use_conv_shortcut: self.conv_shortcut = torch.nn.Conv1d(in_channels, out_channels, kernel_size=3, # Convolutional shortcut stride=1, padding=1) else: self.nin_shortcut = torch.nn.Conv1d(in_channels, out_channels, kernel_size=1, # 1x1 convolution (Network-in-Network) shortcut stride=1, padding=0) def forward(self, x, temb): h = x h = self.norm1(h) h = nonlinearity(h) h = self.conv1(h) h = h + self.temb_proj(nonlinearity(temb))[:, :, None] h = self.norm2(h) h = nonlinearity(h) h = self.dropout(h) h = self.conv2(h) if self.in_channels != self.out_channels: if self.use_conv_shortcut: x = self.conv_shortcut(x) else: x = self.nin_shortcut(x) return x + h class AttnBlock(nn.Module): """Self-attention block for the U-Net.""" def __init__(self, in_channels): super().__init__() self.in_channels = in_channels self.norm = Normalize(in_channels) self.q = torch.nn.Conv1d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.k = torch.nn.Conv1d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.v = torch.nn.Conv1d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.proj_out = torch.nn.Conv1d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) def forward(self, x): h_ = x h_ = self.norm(h_) q = self.q(h_) # Query k = self.k(h_) # Key v = self.v(h_) # Value b, c, w = q.shape q = q.permute(0, 2, 1) # b,w,c (sequence_length, channels) w_ = torch.bmm(q, k) # b,w,w (attention scores: q @ k.T) w_ = w_ * (int(c)**(-0.5)) # Scale by sqrt(channel_dim) w_ = torch.nn.functional.softmax(w_, dim=2) # Softmax over scores # attend to values w_ = w_.permute(0, 2, 1) # b,w,w (transpose back for v @ w_ if v is b,c,w) h_ = torch.bmm(v, w_) # Weighted sum of values h_ = h_.reshape(b, c, w) h_ = self.proj_out(h_) return x + h_ # Add residual connection class Model(nn.Module): """The core U-Net model for the diffusion process.""" def __init__(self, config): super(Model, self).__init__() self.config = config ch, out_ch, ch_mult = config.model.ch, config.model.out_ch, tuple(config.model.ch_mult) num_res_blocks = config.model.num_res_blocks attn_resolutions = config.model.attn_resolutions dropout = config.model.dropout in_channels = config.model.in_channels resolution = config.data.traj_length resamp_with_conv = config.model.resamp_with_conv num_timesteps = config.diffusion.num_diffusion_timesteps if config.model.type == 'bayesian': self.logvar = nn.Parameter(torch.zeros(num_timesteps)) self.ch = ch self.temb_ch = self.ch * 4 self.num_resolutions = len(ch_mult) self.num_res_blocks = num_res_blocks self.resolution = resolution self.in_channels = in_channels # timestep embedding self.temb = nn.Module() self.temb.dense = nn.ModuleList([ torch.nn.Linear(self.ch, self.temb_ch), torch.nn.Linear(self.temb_ch, self.temb_ch), ]) # downsampling self.conv_in = torch.nn.Conv1d(in_channels, # in_channels related to embedding_dim, not traj_length. Input format (batch_size, embedding_dim, traj_length) self.ch, kernel_size=3, stride=1, padding=1) curr_res = resolution in_ch_mult = (1, ) + ch_mult self.down = nn.ModuleList() block_in = None for i_level in range(self.num_resolutions): block = nn.ModuleList() attn = nn.ModuleList() block_in = ch * in_ch_mult[i_level] block_out = ch * ch_mult[i_level] for i_block in range(self.num_res_blocks): block.append( ResnetBlock(in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout)) block_in = block_out if curr_res in attn_resolutions: attn.append(AttnBlock(block_in)) down = nn.Module() down.block = block down.attn = attn if i_level != self.num_resolutions - 1: down.downsample = Downsample(block_in, resamp_with_conv) curr_res = curr_res // 2 self.down.append(down) # middle block self.mid = nn.Module() self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout) self.mid.attn_1 = AttnBlock(block_in) self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout) # upsampling self.up = nn.ModuleList() for i_level in reversed(range(self.num_resolutions)): block = nn.ModuleList() attn = nn.ModuleList() block_out = ch * ch_mult[i_level] skip_in = ch * ch_mult[i_level] for i_block in range(self.num_res_blocks + 1): if i_block == self.num_res_blocks: skip_in = ch * in_ch_mult[i_level] block.append( ResnetBlock(in_channels=block_in + skip_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout)) block_in = block_out if curr_res in attn_resolutions: attn.append(AttnBlock(block_in)) up = nn.Module() up.block = block up.attn = attn if i_level != 0: up.upsample = Upsample(block_in, resamp_with_conv) curr_res = curr_res * 2 self.up.insert(0, up) # Prepend to get consistent order for upsampling path # end self.norm_out = Normalize(block_in) self.conv_out = torch.nn.Conv1d(block_in, out_ch, kernel_size=3, stride=1, padding=1) def forward(self, x, t, extra_embed=None): assert x.shape[2] == self.resolution # Ensure input trajectory length matches model resolution # timestep embedding temb = get_timestep_embedding(t, self.ch) temb = self.temb.dense[0](temb) temb = nonlinearity(temb) temb = self.temb.dense[1](temb) if extra_embed is not None: temb = temb + extra_embed # downsampling hs = [self.conv_in(x)] # List to store hidden states for skip connections # print(hs[-1].shape) for i_level in range(self.num_resolutions): for i_block in range(self.num_res_blocks): h = self.down[i_level].block[i_block](hs[-1], temb) # print(i_level, i_block, h.shape) if len(self.down[i_level].attn) > 0: h = self.down[i_level].attn[i_block](h) hs.append(h) if i_level != self.num_resolutions - 1: hs.append(self.down[i_level].downsample(hs[-1])) # middle # print(hs[-1].shape) # print(len(hs)) h = hs[-1] # Last hidden state from downsampling path h = self.mid.block_1(h, temb) h = self.mid.attn_1(h) h = self.mid.block_2(h, temb) # print(h.shape) # upsampling for i_level in reversed(range(self.num_resolutions)): for i_block in range(self.num_res_blocks + 1): ht = hs.pop() # Get corresponding hidden state from downsampling path if ht.size(-1) != h.size(-1): # Pad if spatial dimensions do not match (can happen with odd resolutions) h = torch.nn.functional.pad(h, (0, ht.size(-1) - h.size(-1))) h = self.up[i_level].block[i_block](torch.cat([h, ht], dim=1), # Concatenate skip connection temb) # print(i_level, i_block, h.shape) if len(self.up[i_level].attn) > 0: h = self.up[i_level].attn[i_block](h) if i_level != 0: h = self.up[i_level].upsample(h) # end h = self.norm_out(h) h = nonlinearity(h) h = self.conv_out(h) return h class Guide_UNet(nn.Module): """A U-Net model guided by attribute and prototype embeddings.""" def __init__(self, config): super(Guide_UNet, self).__init__() self.config = config self.in_channels = config.model.in_channels self.ch = config.model.ch * 4 self.attr_dim = config.model.attr_dim self.guidance_scale = config.model.guidance_scale self.unet = Model(config) self.guide_emb = WideAndDeep(self.in_channels, self.ch) self.place_emb = WideAndDeep(self.in_channels, self.ch) def forward(self, x, t, attr, prototype): guide_emb = self.guide_emb(attr, prototype) # Conditional embedding target_device = attr.device # Get device from an existing input tensor place_vector = torch.zeros(attr.shape, device=target_device) place_prototype = torch.zeros(prototype.shape, device=target_device) place_emb = self.place_emb(place_vector, place_prototype) # Unconditional embedding cond_noise = self.unet(x, t, guide_emb) # Conditioned UNet pass uncond_noise = self.unet(x, t, place_emb) # Unconditioned UNet pass (for classifier-free guidance) # Classifier-free guidance pred_noise = cond_noise + self.guidance_scale * (cond_noise - uncond_noise) return pred_noise class WeightedLoss(nn.Module): """Base class for weighted losses.""" def __init__(self): super(WeightedLoss, self).__init__() def forward(self, pred, target, weighted=1.0): """ pred, target:[batch_size, 2, traj_length] """ loss = self._loss(pred, target) weightedLoss = (loss * weighted).mean() # Apply weights and average # loss = self._loss(weighted * pred, weighted * target) # weightedLoss = loss.mean() return weightedLoss class WeightedL1(WeightedLoss): """Weighted L1 Loss (Mean Absolute Error).""" def _loss(self, pred, target): return torch.abs(pred - target) class WeightedL2(WeightedLoss): """Weighted L2 Loss (Mean Squared Error).""" def _loss(self, pred, target): return F.mse_loss(pred, target, reduction='none') class WeightedL3(WeightedLoss): """A custom weighted L3-like loss, where weights depend on the error magnitude.""" def __init__(self, base_weight=1000.0, scale_factor=10000.0): super(WeightedL3, self).__init__() self.base_weight = base_weight self.scale_factor = scale_factor def _loss(self, pred, target): error = F.mse_loss(pred, target, reduction='none') weight = self.base_weight + self.scale_factor * error loss = weight * torch.abs(pred - target) return loss Losses = { 'l1': WeightedL1, 'l2': WeightedL2, 'l3': WeightedL3, } def extract(a, t, x_shape): """Extracts values from a (typically constants like alphas) at given timesteps t and reshapes them to match the batch shape x_shape. """ b, *_ = t.shape out = a.gather(-1, t) return out.reshape(b, *((1,) * (len(x_shape) - 1))) # Reshape to (b, 1, 1, ...) for broadcasting class Diffusion(nn.Module): """Denoising Diffusion Probabilistic Model (DDPM). This class now also includes DDIM sampling capabilities. """ def __init__(self, loss_type, config, clip_denoised=True, predict_epsilon=True, **kwargs): super(Diffusion, self).__init__() self.predict_epsilon = predict_epsilon self.T = config.diffusion.num_diffusion_timesteps self.model = Guide_UNet(config) self.beta_schedule = config.diffusion.beta_schedule self.beta_start = config.diffusion.beta_start self.beta_end = config.diffusion.beta_end if self.beta_schedule == "linear": betas = torch.linspace(self.beta_start, self.beta_end, self.T, dtype=torch.float32) elif self.beta_schedule == "cosine": # Implement cosine schedule pass else: raise ValueError(f"Unsupported beta_schedule: {self.beta_schedule}") alphas = 1.0 - betas alpha_cumprod = torch.cumprod(alphas, axis=0) alpha_cumprod_prev = torch.cat([torch.ones(1, device=betas.device), alpha_cumprod[:-1]]) self.register_buffer("betas", betas) self.register_buffer("alphas", alphas) self.register_buffer("alpha_cumprod", alpha_cumprod) self.register_buffer("alpha_cumprod_prev", alpha_cumprod_prev) # Parameters for q(x_t | x_0) (forward process - DDPM & DDIM) self.register_buffer("sqrt_alphas_cumprod", torch.sqrt(alpha_cumprod)) self.register_buffer("sqrt_one_minus_alphas_cumprod", torch.sqrt(1.0 - alpha_cumprod)) # Parameters for DDPM reverse process posterior q(x_{t-1} | x_t, x_0) posterior_variance = betas * (1.0 - alpha_cumprod_prev) / (1.0 - alpha_cumprod) self.register_buffer("posterior_variance", posterior_variance) self.register_buffer("posterior_log_variance_clipped", torch.log(posterior_variance.clamp(min=1e-20))) self.register_buffer("posterior_mean_coef1", betas * torch.sqrt(alpha_cumprod_prev) / (1.0 - alpha_cumprod)) self.register_buffer("posterior_mean_coef2", (1.0 - alpha_cumprod_prev) * torch.sqrt(alphas) / (1.0 - alpha_cumprod)) # Parameters for computing x_0 from x_t and noise (used in DDPM prediction and DDIM sampling) self.register_buffer("sqrt_recip_alphas_cumprod", torch.sqrt(1.0 / alpha_cumprod)) self.register_buffer("sqrt_recipminus_alphas_cumprod", torch.sqrt(1.0 / alpha_cumprod - 1)) self.loss_fn = Losses[loss_type]() def q_posterior(self, x_start, x, t): """Compute the mean, variance, and log variance of the posterior q(x_{t-1} | x_t, x_0).""" posterior_mean = ( extract(self.posterior_mean_coef1, t, x.shape) * x_start + extract(self.posterior_mean_coef2, t, x.shape) * x ) posterior_variance = extract(self.posterior_variance, t, x.shape) posterior_log_variance = extract(self.posterior_log_variance_clipped, t, x.shape) return posterior_mean, posterior_variance, posterior_log_variance def predict_start_from_noise(self, x, t, pred_noise): """Compute x_0 from x_t and predicted noise epsilon_theta(x_t, t). Used by both DDPM and DDIM. """ return ( extract(self.sqrt_recip_alphas_cumprod, t, x.shape) * x - extract(self.sqrt_recipminus_alphas_cumprod, t, x.shape) * pred_noise ) def p_mean_variance(self, x, t, attr, prototype): """Compute the mean and variance of the reverse process p_theta(x_{t-1} | x_t).""" pred_noise = self.model(x, t, attr, prototype) x_recon = self.predict_start_from_noise(x, t, pred_noise) # Predict x0 model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_recon, x, t) return model_mean, posterior_log_variance def p_sample(self, x, t, attr, prototype, start_end_info): """Sample x_{t-1} from the model p_theta(x_{t-1} | x_t) (DDPM step).""" b = x.shape[0] model_mean, model_log_variance = self.p_mean_variance(x, t, attr, prototype) noise = torch.randn_like(x) nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) # No noise when t=0 x = model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise # Fix the first and last point for trajectory interpolation x[:, :, 0] = start_end_info[:, :, 0] x[:, :, -1] = start_end_info[:, :, -1] return x def p_sample_loop(self, test_x0, attr, prototype, *args, **kwargs): """DDPM sampling loop to generate x_0 from x_T (noise).""" batch_size = attr.shape[0] device = attr.device # Assuming attr is on the correct device x = torch.randn(attr.shape, requires_grad=False, device=device) # Start with pure noise start_end_info = test_x0.clone() # Contains the ground truth start and end points # Fix the first and last point from the start x[:, :, 0] = start_end_info[:, :, 0] x[:, :, -1] = start_end_info[:, :, -1] for i in reversed(range(0, self.T)): # Iterate from T-1 down to 0 t = torch.full((batch_size,), i, dtype=torch.long, device=device) x = self.p_sample(x, t, attr, prototype, start_end_info) return x # --------------------- DDIM Sampling Methods --------------------- def ddim_sample(self, x, t, t_prev, attr, prototype, start_end_info, eta=0.0): """ DDIM sampling step from t to t_prev. eta: Controls stochasticity. 0 for DDIM (deterministic), 1 for DDPM-like (stochastic). """ # Ensure model is on the same device as x self.model.to(x.device) pred_noise = self.model(x, t, attr, prototype) x_0_pred = self.predict_start_from_noise(x, t, pred_noise) x_0_pred[:, :, 0] = start_end_info[:, :, 0] x_0_pred[:, :, -1] = start_end_info[:, :, -1] alpha_cumprod_t = extract(self.alpha_cumprod, t, x.shape) alpha_cumprod_t_prev = extract(self.alpha_cumprod, t_prev, x.shape) if t_prev.all() >= 0 else torch.ones_like(alpha_cumprod_t) sigma_t = eta * torch.sqrt((1 - alpha_cumprod_t_prev) / (1 - alpha_cumprod_t) * (1 - alpha_cumprod_t / alpha_cumprod_t_prev)) c1 = torch.sqrt(alpha_cumprod_t_prev) c2 = torch.sqrt(1 - alpha_cumprod_t_prev - sigma_t**2) noise_cond = torch.zeros_like(x) if eta > 0: noise_cond = torch.randn_like(x) noise_cond[:, :, 0] = 0 noise_cond[:, :, -1] = 0 x_prev = c1 * x_0_pred + c2 * pred_noise + sigma_t * noise_cond x_prev[:, :, 0] = start_end_info[:, :, 0] x_prev[:, :, -1] = start_end_info[:, :, -1] return x_prev def ddim_sample_loop(self, test_x0, attr, prototype, num_steps=50, eta=0.0): """ DDIM sampling loop. Can use fewer steps than original diffusion process. num_steps: Number of sampling steps (can be less than self.T). eta: Controls stochasticity (0 for deterministic, 1 for fully stochastic). """ batch_size = attr.shape[0] device = attr.device # Assuming attr is on the correct device x = torch.randn(attr.shape, requires_grad=False, device=device) start_end_info = test_x0.clone() x[:, :, 0] = start_end_info[:, :, 0] x[:, :, -1] = start_end_info[:, :, -1] times = torch.linspace(self.T - 1, 0, num_steps + 1, device=device).long() # Ensure times tensor is on the same device for i in range(num_steps): t = times[i] t_next = times[i + 1] # Create full tensors for t and t_next for batch processing t_tensor = torch.full((batch_size,), t.item(), dtype=torch.long, device=device) t_next_tensor = torch.full((batch_size,), t_next.item(), dtype=torch.long, device=device) x = self.ddim_sample(x, t_tensor, t_next_tensor, attr, prototype, start_end_info, eta) return x # --------------------- Unified Sampling Entry Point --------------------- def sample(self, test_x0, attr, prototype, sampling_type='ddpm', ddim_num_steps=50, ddim_eta=0.0, *args, **kwargs): """Generate samples using either DDPM or DDIM. Args: test_x0 (torch.Tensor): Tensor containing ground truth data, primarily used for start/end points. attr (torch.Tensor): Attributes for conditioning. prototype (torch.Tensor): Prototypes for conditioning. sampling_type (str, optional): 'ddpm' or 'ddim'. Defaults to 'ddpm'. ddim_num_steps (int, optional): Number of steps for DDIM sampling. Defaults to 50. ddim_eta (float, optional): Eta for DDIM sampling. Defaults to 0.0. """ self.model.eval() # Set model to evaluation mode for sampling with torch.no_grad(): if sampling_type == 'ddpm': return self.p_sample_loop(test_x0, attr, prototype, *args, **kwargs) elif sampling_type == 'ddim': return self.ddim_sample_loop(test_x0, attr, prototype, num_steps=ddim_num_steps, eta=ddim_eta) else: raise ValueError(f"Unsupported sampling_type: {sampling_type}. Choose 'ddpm' or 'ddim'.") #----------------------------------training----------------------------------# def q_sample(self, x_start, t, noise): """Sample x_t from x_0 using q(x_t | x_0) = sqrt(alpha_bar_t)x_0 + sqrt(1-alpha_bar_t)noise.""" sample = ( extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise ) # Keep start and end points fixed during noising process as well (for interpolation task) sample[:, :, 0] = x_start[:, :, 0] sample[:, :, -1] = x_start[:, :, -1] return sample def p_losses(self, x_start, attr, prototype, t, weights=1.0): """Calculate the diffusion loss (typically MSE between predicted noise and actual noise). This is common for both DDPM and DDIM training. """ noise = torch.randn_like(x_start) # For interpolation, noise is not added to the fixed start/end points noise[:, :, 0] = 0 noise[:, :, -1] = 0 x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) x_recon = self.model(x_noisy, t, attr, prototype) # Model predicts noise or x0 assert noise.shape == x_recon.shape if self.predict_epsilon: # Loss on the predicted noise, excluding start/end points loss = self.loss_fn(x_recon[:, :, 1:-1], noise[:, :, 1:-1], weights) else: # Loss on the predicted x0, excluding start/end points loss = self.loss_fn(x_recon[:, :, 1:-1], x_start[:, :, 1:-1], weights) return loss def trainer(self, x, attr, prototype, weights=1.0): """Performs a single training step. Common for DDPM and DDIM.""" self.model.train() # Set model to training mode batch_size = len(x) t = torch.randint(0, self.T, (batch_size,), device=x.device).long() # Sample random timesteps on the same device as x return self.p_losses(x, attr, prototype, t, weights) def forward(self, test_x0, attr, prototype, sampling_type='ddpm', ddim_num_steps=50, ddim_eta=0.0, *args, **kwargs): """Default forward pass calls the unified sampling method.""" return self.sample(test_x0, attr, prototype, sampling_type=sampling_type, ddim_num_steps=ddim_num_steps, ddim_eta=ddim_eta, *args, **kwargs)