import torch import torch.nn as nn import torch.nn.functional as F class ContrastiveLoss(nn.Module): """Contrastive loss function. Encourages 'anchor' to be close to 'positive' samples and far from 'negative' samples. """ def __init__(self, margin=1.0): """Initializes ContrastiveLoss. Args: margin (float, optional): The margin for the loss. Defaults to 1.0. """ super(ContrastiveLoss, self).__init__() self.margin = margin def forward(self, anchor, positive, negative): """Computes the contrastive loss. Args: anchor (torch.Tensor): Embeddings of the anchor samples. positive (torch.Tensor): Embeddings of the positive samples. negative (torch.Tensor): Embeddings of the negative samples. Returns: torch.Tensor: The mean contrastive loss. """ pos_dist = F.pairwise_distance(anchor, positive) neg_dist = F.pairwise_distance(anchor, negative) # Loss = max(0, pos_dist - neg_dist + margin) loss = torch.mean(F.relu(pos_dist - neg_dist + self.margin)) return loss