import torch import torch.nn as nn import torch.nn.functional as F class TrajectoryTransformer(nn.Module): """Transformer model to learn trajectory embeddings and a set of learnable prototypes.""" def __init__(self, input_dim, embed_dim, num_layers, num_heads, forward_dim, seq_len, n_cluster, dropout=0.1): """Initializes the TrajectoryTransformer. Args: input_dim (int): Dimension of the input trajectory points (e.g., 3 for time, lat, lon). embed_dim (int): Dimension of the embeddings within the transformer. num_layers (int): Number of transformer encoder layers. num_heads (int): Number of attention heads in the transformer. forward_dim (int): Dimension of the feed-forward network in transformer layers. seq_len (int): Length of the input trajectory sequences. n_cluster (int): Number of prototypes to learn. dropout (float, optional): Dropout rate. Defaults to 0.1. """ super(TrajectoryTransformer, self).__init__() self.input_dim = input_dim self.embed_dim = embed_dim self.n_cluster = n_cluster self.linear_projection = nn.Linear(input_dim, embed_dim) # Positional embedding for the sequence self.pos_embedding = nn.Parameter(torch.randn(1, seq_len, embed_dim)) # Standard Transformer Encoder encoder_layer = nn.TransformerEncoderLayer(d_model=embed_dim, nhead=num_heads, dim_feedforward=forward_dim, dropout=dropout, batch_first=True) self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_layers) # Layer Normalization layers self.layer_norm1 = nn.LayerNorm(embed_dim) self.layer_norm2 = nn.LayerNorm(embed_dim) self.layer_norm_features = nn.LayerNorm(embed_dim) # Learnable prototypes self.prototypes = nn.Parameter(torch.randn(n_cluster, embed_dim)) # Initialize weights self._init_weights() def _init_weights(self): """Initializes weights of the linear layers, transformer components, and prototypes.""" nn.init.xavier_uniform_(self.linear_projection.weight) if self.linear_projection.bias is not None: nn.init.zeros_(self.linear_projection.bias) # Initialize transformer layers (already done by PyTorch's default, but can be overridden) for layer in self.transformer_encoder.layers: nn.init.xavier_uniform_(layer.linear1.weight) if layer.linear1.bias is not None: nn.init.zeros_(layer.linear1.bias) nn.init.xavier_uniform_(layer.linear2.weight) if layer.linear2.bias is not None: nn.init.zeros_(layer.linear2.bias) # Self-attention weights are more complex (in_proj_weight, out_proj.weight) # Default Pytorch init is usually fine for these. if hasattr(layer.self_attn, 'in_proj_weight') and layer.self_attn.in_proj_weight is not None: nn.init.xavier_uniform_(layer.self_attn.in_proj_weight) if hasattr(layer.self_attn, 'in_proj_bias') and layer.self_attn.in_proj_bias is not None: nn.init.zeros_(layer.self_attn.in_proj_bias) if hasattr(layer.self_attn.out_proj, 'weight') and layer.self_attn.out_proj.weight is not None: nn.init.xavier_uniform_(layer.self_attn.out_proj.weight) if hasattr(layer.self_attn.out_proj, 'bias') and layer.self_attn.out_proj.bias is not None: nn.init.zeros_(layer.self_attn.out_proj.bias) # Initialize prototypes (e.g., Xavier uniform) nn.init.xavier_uniform_(self.prototypes.data) def forward(self, x): """Forward pass of the TrajectoryTransformer. Args: x (torch.Tensor): Input trajectory batch, shape (batch_size, seq_len, input_dim). Returns: Tuple[torch.Tensor, torch.Tensor]: - prototypes (torch.Tensor): Learned prototypes, shape (n_cluster, embed_dim). - features (torch.Tensor): Trajectory features, shape (batch_size, embed_dim). """ batch_size, seq_len, _ = x.size() x = self.linear_projection(x) # Project to (batch_size, seq_len, embed_dim) x = self.layer_norm1(x) # Apply layer normalization x = x + self.pos_embedding[:, :seq_len, :] # Add positional embedding x = self.transformer_encoder(x) # Input: (batch_size, seq_len, embed_dim) x = self.layer_norm2(x) # Apply layer normalization after transformer # Aggregate features from the sequence (e.g., by summing along sequence length) features = x.sum(dim=1) # (batch_size, embed_dim) features = self.layer_norm_features(features) # Normalize aggregated features # The first returned value `prototypes_from_transformer` in train.py was from the old `output_layer`. # Now we return the learnable self.prototypes. return self.prototypes, features