YYJMAY commited on
Commit
d1028d4
·
verified ·
1 Parent(s): 0072d2c

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +151 -0
README.md ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ task_categories:
4
+ - text-classification
5
+ tags:
6
+ - tcr
7
+ - mhc
8
+ - peptide
9
+ - immunology
10
+ - out-of-distribution
11
+ - allelic-generalization
12
+ - biology
13
+ - sequence-modeling
14
+ size_categories:
15
+ - 10K<n<100K
16
+ ---
17
+
18
+ # Allelic OOD Dataset
19
+
20
+ ## Dataset Description
21
+
22
+ The Allelic OOD (Out-of-Distribution) dataset is designed to evaluate TCR-pMHC binding prediction models on **rare and novel HLA alleles** that are infrequent or completely absent in training data. This tests the model's ability to generalize to new HLA variants (allelic generalization).
23
+
24
+ ### Key Features
25
+
26
+ - **Allelic OOD Testing**: Contains samples with HLA alleles that appear at ≤1% frequency in **both** PM and PMT training sets (rare alleles), plus alleles completely absent from training (zero-shot alleles)
27
+ - **Two OOD Types**:
28
+ - **Rare Alleles**: HLA alleles with ≤1% frequency in training (intersection of PM and PMT trains)
29
+ - **Zero-Shot Alleles**: HLA alleles completely absent from both PM and PMT training sets
30
+ - **Dual Task Support**:
31
+ - **PMT Task**: Samples with CDR3 sequences (~10% of data) for TCR-Peptide-MHC prediction
32
+ - **PM Task**: All samples (100%) for Peptide-MHC prediction
33
+ - **Peptide Length Control**: All peptides filtered to 8-14 amino acids to isolate allelic OOD from length OOD
34
+ - **Standardized HLA Format**: All HLA alleles normalized to A*02:01 format
35
+ - **Quality Controlled**: Deduplicated and validated data
36
+
37
+ ## Dataset Structure
38
+
39
+ ### Data Format
40
+
41
+ CSV file with the following columns:
42
+
43
+ | Column | Type | Description | Required |
44
+ |--------|------|-------------|----------|
45
+ | CDR3 | string | TCR CDR3beta amino acid sequence | Optional (for PMT task) |
46
+ | peptide | string | Peptide amino acid sequence (8-14 aa) | Yes |
47
+ | HLA | string | HLA allele (e.g., A*02:01, B*07:02) | Yes |
48
+ | label | int | Binding label (1=binder, 0=non-binder) | Yes |
49
+ | ood_type | string | OOD category: 'rare' or 'zero' | Yes |
50
+ | HLA_sequence | string | HLA pseudo-sequence | Optional |
51
+
52
+ ### Dataset Statistics
53
+
54
+ - **Total Samples**: 62205
55
+ - **Positive Samples**: 28167 (45.3%)
56
+ - **Negative Samples**: 34038 (54.7%)
57
+ - **Unique HLA Alleles**: 32
58
+ - Rare alleles (≤1% in training): 21
59
+ - Zero-shot alleles (absent in training): 11
60
+ - **Samples with CDR3 (PMT)**: 6094 (9.8%)
61
+ - **Samples without CDR3 (PM only)**: 56111 (90.2%)
62
+ - **Peptide Length Range**: 8-14 amino acids
63
+
64
+ ### HLA Allele Distribution
65
+
66
+ The dataset focuses on rare and zero-shot HLA alleles:
67
+ - B*18:01: 40311 samples
68
+ - A*32:01: 1965 samples
69
+ - B*14:02: 1871 samples
70
+ - B*38:01: 1850 samples
71
+ - C*16:01: 1734 samples
72
+ - B*27:01: 1626 samples
73
+ - B*35:08: 1465 samples
74
+ - A*02:07: 1311 samples
75
+ - C*14:02: 1300 samples
76
+ - C*01:02: 1237 samples
77
+
78
+ ## Usage
79
+
80
+ ### Load with Hugging Face Datasets
81
+
82
+ ```python
83
+ from datasets import load_dataset
84
+
85
+ dataset = load_dataset("YYJMAY/allelic-ood")
86
+ df = dataset['train'].to_pandas()
87
+ ```
88
+
89
+ ### Load with Pandas
90
+
91
+ ```python
92
+ import pandas as pd
93
+ from huggingface_hub import hf_hub_download
94
+
95
+ file_path = hf_hub_download(
96
+ repo_id="YYJMAY/allelic-ood",
97
+ filename="allelic_ood.csv",
98
+ repo_type="dataset"
99
+ )
100
+ df = pd.read_csv(file_path)
101
+ ```
102
+
103
+ ### Use with SPRINT Framework
104
+
105
+ ```python
106
+ from sprint.core.dataset_manager import DatasetManager
107
+
108
+ manager = DatasetManager()
109
+ dataset_config = {
110
+ 'hf_repo': 'YYJMAY/allelic-ood',
111
+ 'files': ['allelic_ood.csv'],
112
+ 'test': 'allelic_ood.csv'
113
+ }
114
+
115
+ files = manager.get_dataset('allelic_ood', dataset_config)
116
+ test_file = files['test']
117
+ ```
118
+
119
+ ## Construction Method
120
+
121
+ This dataset was constructed by:
122
+
123
+ 1. **Training Set Analysis**: Analyzing HLA frequency distribution in both PMT and PM training sets
124
+ 2. **Rare HLA Identification**:
125
+ - Rare: HLA alleles appearing at ≤1% frequency in **both** PM and PMT training sets
126
+ - Zero-shot: HLA alleles completely absent from both training sets
127
+ 3. **Data Collection**: Extracting samples with rare/zero-shot HLAs from multiple OOD test sources
128
+ 4. **Peptide Length Filtering**: Restricting to 8-14 amino acids to isolate allelic shift from length shift
129
+ 5. **Format Standardization**: Normalizing HLA naming conventions (HLA-A*02:01 → A*02:01)
130
+ 6. **Quality Control**: Deduplication and validation
131
+
132
+ ## Citation
133
+
134
+ If you use this dataset, please cite:
135
+
136
+ ```bibtex
137
+ @dataset{allelic_ood_2024,
138
+ title={Allelic OOD Dataset for TCR-pMHC Binding Prediction},
139
+ author={SPRINT Framework Contributors},
140
+ year={2024},
141
+ url={https://huggingface.co/datasets/YYJMAY/allelic-ood}
142
+ }
143
+ ```
144
+
145
+ ## License
146
+
147
+ MIT License
148
+
149
+ ## Contact
150
+
151
+ For questions or issues, please open an issue on the dataset repository.