Datasets:
Upload README.md with huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
task_categories:
|
| 4 |
+
- text-classification
|
| 5 |
+
tags:
|
| 6 |
+
- tcr
|
| 7 |
+
- tcr-pmhc
|
| 8 |
+
- peptide
|
| 9 |
+
- mhc
|
| 10 |
+
- immunology
|
| 11 |
+
- binding-prediction
|
| 12 |
+
- pmt
|
| 13 |
+
size_categories:
|
| 14 |
+
- 100K<n<1M
|
| 15 |
+
---
|
| 16 |
+
|
| 17 |
+
# PMT Benchmark Dataset
|
| 18 |
+
|
| 19 |
+
## Dataset Description
|
| 20 |
+
|
| 21 |
+
The PMT (Peptide-MHC-TCR) benchmark dataset for training and evaluating TCR-pMHC binding prediction models. This dataset contains TCR CDR3 sequences, peptide antigens, HLA alleles, and binary binding labels.
|
| 22 |
+
|
| 23 |
+
### Dataset Summary
|
| 24 |
+
|
| 25 |
+
This is the official PMT training and in-distribution (ID) test set from the SPRINT framework. The data has been cleaned, deduplicated, and standardized for reproducibility.
|
| 26 |
+
|
| 27 |
+
- **Training Set**: 474,881 samples
|
| 28 |
+
- **ID Test Set**: 4,564 samples
|
| 29 |
+
- **Task**: Binary classification (TCR-pMHC binding prediction)
|
| 30 |
+
- **Modality**: TCR CDR3 + Peptide + MHC (PMT task)
|
| 31 |
+
|
| 32 |
+
## Dataset Structure
|
| 33 |
+
|
| 34 |
+
### Data Files
|
| 35 |
+
|
| 36 |
+
- `train.csv`: Training data (474,881 samples)
|
| 37 |
+
- `id_test.csv`: In-distribution test data (4,564 samples)
|
| 38 |
+
|
| 39 |
+
### Data Format
|
| 40 |
+
|
| 41 |
+
CSV files with the following columns:
|
| 42 |
+
|
| 43 |
+
| Column | Type | Description |
|
| 44 |
+
|--------|------|-------------|
|
| 45 |
+
| CDR3 | string | TCR CDR3beta amino acid sequence |
|
| 46 |
+
| peptide | string | Peptide antigen sequence (8-15 aa) |
|
| 47 |
+
| HLA | string | HLA allele (standardized format: A*02:01) |
|
| 48 |
+
| label | int | Binding label (1=binder, 0=non-binder) |
|
| 49 |
+
| HLA_sequence | string | HLA pseudo-sequence (optional) |
|
| 50 |
+
|
| 51 |
+
### Dataset Statistics
|
| 52 |
+
|
| 53 |
+
#### Training Set
|
| 54 |
+
|
| 55 |
+
- **Total Samples**: 474,881
|
| 56 |
+
- **Positive Samples**: 33,129 (7.0%)
|
| 57 |
+
- **Negative Samples**: 441,752 (93.0%)
|
| 58 |
+
- **Unique HLAs**: 78
|
| 59 |
+
- **Unique Peptides**: 638
|
| 60 |
+
- **Unique TCRs**: 32,853
|
| 61 |
+
|
| 62 |
+
#### ID Test Set
|
| 63 |
+
|
| 64 |
+
- **Total Samples**: 4,564
|
| 65 |
+
- **Positive Samples**: 321 (7.0%)
|
| 66 |
+
- **Negative Samples**: 4,243 (93.0%)
|
| 67 |
+
- **Unique HLAs**: 12
|
| 68 |
+
- **Unique Peptides**: 190
|
| 69 |
+
- **Unique TCRs**: 1,283
|
| 70 |
+
|
| 71 |
+
## Usage
|
| 72 |
+
|
| 73 |
+
### Load with Hugging Face Datasets
|
| 74 |
+
|
| 75 |
+
```python
|
| 76 |
+
from datasets import load_dataset
|
| 77 |
+
|
| 78 |
+
# Load training data
|
| 79 |
+
dataset = load_dataset("YYJMAY/pmt-interaction", split="train")
|
| 80 |
+
train_df = dataset.to_pandas()
|
| 81 |
+
|
| 82 |
+
# Load test data
|
| 83 |
+
dataset = load_dataset("YYJMAY/pmt-interaction", split="test")
|
| 84 |
+
test_df = dataset.to_pandas()
|
| 85 |
+
```
|
| 86 |
+
|
| 87 |
+
### Load with Pandas
|
| 88 |
+
|
| 89 |
+
```python
|
| 90 |
+
import pandas as pd
|
| 91 |
+
from huggingface_hub import hf_hub_download
|
| 92 |
+
|
| 93 |
+
# Download training file
|
| 94 |
+
train_path = hf_hub_download(
|
| 95 |
+
repo_id="YYJMAY/pmt-interaction",
|
| 96 |
+
filename="train.csv",
|
| 97 |
+
repo_type="dataset"
|
| 98 |
+
)
|
| 99 |
+
train_df = pd.read_csv(train_path)
|
| 100 |
+
|
| 101 |
+
# Download test file
|
| 102 |
+
test_path = hf_hub_download(
|
| 103 |
+
repo_id="YYJMAY/pmt-interaction",
|
| 104 |
+
filename="id_test.csv",
|
| 105 |
+
repo_type="dataset"
|
| 106 |
+
)
|
| 107 |
+
test_df = pd.read_csv(test_path)
|
| 108 |
+
```
|
| 109 |
+
|
| 110 |
+
### Use with SPRINT Framework
|
| 111 |
+
|
| 112 |
+
The SPRINT framework automatically downloads and uses this dataset:
|
| 113 |
+
|
| 114 |
+
```bash
|
| 115 |
+
python scripts/run_benchmark.py --method METHOD --dataset pmt --mode train
|
| 116 |
+
python scripts/run_benchmark.py --method METHOD --dataset pmt --mode eval
|
| 117 |
+
```
|
| 118 |
+
|
| 119 |
+
## Data Quality
|
| 120 |
+
|
| 121 |
+
### Preprocessing
|
| 122 |
+
|
| 123 |
+
- **Deduplication**: All duplicate entries removed based on (CDR3, peptide, HLA, label)
|
| 124 |
+
- **HLA Standardization**: All HLA alleles normalized to standard format (e.g., A*02:01)
|
| 125 |
+
- **Missing Values**: No missing values in required columns
|
| 126 |
+
- **Label Validation**: All labels are binary (0 or 1)
|
| 127 |
+
|
| 128 |
+
### Peptide Length Distribution
|
| 129 |
+
|
| 130 |
+
Training set peptide lengths: 8-15 amino acids
|
| 131 |
+
Test set peptide lengths: 8-15 amino acids
|
| 132 |
+
|
| 133 |
+
## Construction
|
| 134 |
+
|
| 135 |
+
This dataset was curated and cleaned as part of the SPRINT benchmarking framework:
|
| 136 |
+
|
| 137 |
+
1. Collected from multiple public TCR-pMHC datasets
|
| 138 |
+
2. Standardized HLA allele naming conventions
|
| 139 |
+
3. Removed duplicates and incomplete entries
|
| 140 |
+
4. Split into training and in-distribution test sets
|
| 141 |
+
5. Validated for data quality and consistency
|
| 142 |
+
|
| 143 |
+
## Tasks
|
| 144 |
+
|
| 145 |
+
This dataset is designed for:
|
| 146 |
+
|
| 147 |
+
- **PMT (Peptide-MHC-TCR) Task**: Predict TCR-pMHC binding using all three components
|
| 148 |
+
- **Binary Classification**: Classify as binder (1) or non-binder (0)
|
| 149 |
+
- **Model Benchmarking**: Evaluate model performance on standardized data
|
| 150 |
+
|
| 151 |
+
## Limitations
|
| 152 |
+
|
| 153 |
+
- Only includes class I MHC (HLA-A, HLA-B, HLA-C)
|
| 154 |
+
- Limited to TCR CDR3beta sequences
|
| 155 |
+
- Binary labels (no binding affinity values)
|
| 156 |
+
- Peptide length range: 8-15 amino acids
|
| 157 |
+
|
| 158 |
+
## Citation
|
| 159 |
+
|
| 160 |
+
If you use this dataset, please cite:
|
| 161 |
+
|
| 162 |
+
```bibtex
|
| 163 |
+
@dataset{pmt_benchmark_2024,
|
| 164 |
+
title={PMT Benchmark Dataset for TCR-pMHC Binding Prediction},
|
| 165 |
+
author={SPRINT Framework Contributors},
|
| 166 |
+
year={2024},
|
| 167 |
+
url={https://huggingface.co/datasets/YYJMAY/pmt-interaction}
|
| 168 |
+
}
|
| 169 |
+
```
|
| 170 |
+
|
| 171 |
+
## License
|
| 172 |
+
|
| 173 |
+
MIT License
|
| 174 |
+
|
| 175 |
+
## Contact
|
| 176 |
+
|
| 177 |
+
For questions or issues, please open an issue in the SPRINT repository.
|
| 178 |
+
|
| 179 |
+
## Related Datasets
|
| 180 |
+
|
| 181 |
+
- Allelic OOD: YYJMAY/allelic-ood
|
| 182 |
+
- Temporal OOD: YYJMAY/temporal-ood
|
| 183 |
+
- Modality OOD: YYJMAY/modality-ood
|