akhauriyash commited on
Commit
45e68b1
·
verified ·
1 Parent(s): af0e099

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +63 -0
README.md ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Code-Regression
2
+
3
+ A unified regression dataset collated from three sources (APPS, KBSS, CDSS) along with our own custom profiling for training and evaluating regression models that map code strings to a target metric.
4
+
5
+ ## Schema
6
+ - **identifier** *(string)*: Source key for the example, e.g. `APPS_0`, `KBSS_1`, `CDSS_42`.
7
+ - **space** *(string)*: Logical dataset split/source (`APPS`, `KBSS`, or `CDSS`).
8
+ - **input** *(string)*: The input string (`shortest_onnx`).
9
+ - **target_metric** *(string)*: Always `val_accuracy`.
10
+ - **val_accuracy** *(number | null)*: The regression target.
11
+ - **metric_type** *(string)*: Auxiliary metric family for this row:
12
+ - `memory_bytes` for APPS and CDSS
13
+ - `latency_ms` for KBSS
14
+ - **metadata** *(string)*: A Python-dict-like string with source-specific information:
15
+ - APPS: `problem_metainformation` cast to string.
16
+ - KBSS: `{'stddev_ms': <value>}`.
17
+ - CDSS: subset of fields `{s_id, p_id, u_id, date, language, original_language, filename_ext, status, cpu_time, memory, code_size}`.
18
+
19
+ > Tip: turn `metadata` back into a dict with:
20
+ > ```python
21
+ > from ast import literal_eval
22
+ > meta = literal_eval(row["metadata"])
23
+ > ```
24
+
25
+ ## How to load with 🤗 Datasets
26
+ ```python
27
+ from datasets import load_dataset
28
+
29
+ # After you upload this folder to a dataset repo, e.g. your-username/Code-Regression
30
+ ds = load_dataset("your-username/Code-Regression")
31
+
32
+ # Or from a local clone:
33
+ # ds = load_dataset("json", data_files="Code-Regression/data.jsonl", split="train")
34
+ ```
35
+
36
+ # Credits
37
+
38
+ This dataset was collated from several sources, along with our own latency and memory profiling. We thank the authors for their efforts.
39
+
40
+ APPS:
41
+ Hendrycks, D., Basart, S., Kadavath, S., Mazeika, M., Arora, A., Guo, E., Burns, C., Puranik, S., He, H., Song, D., & Steinhardt, J. (2021). Measuring Coding Challenge Competence With APPS. NeurIPS.
42
+
43
+ CDSS (CodeNet):
44
+ Puri, R., Kung, D. S., Janssen, G., Zhang, W., Domeniconi, G., Zolotov, V., Dolby, J., Chen, J., Choudhury, M., Decker, L., & others. (2021). Codenet: A large-scale ai for code dataset for learning a diversity of coding tasks. ArXiv Preprint ArXiv:2105.12655.
45
+
46
+ KBSS (KernelBook):
47
+ Paliskara, S., & Saroufim, M. (2025). KernelBook. https://huggingface.co/datasets/GPUMODE/KernelBook
48
+
49
+ ## Citations
50
+
51
+ If you found this dataset useful for your research, please cite the original sources above as well as:
52
+
53
+ ```
54
+ @article{akhauri2025performance,
55
+ title={Performance Prediction for Large Systems via Text-to-Text Regression},
56
+ author={Akhauri, Yash and Lewandowski, Bryan and Lin, Cheng-Hsi and Reyes, Adrian N and Forbes, Grant C and Wongpanich, Arissa and Yang, Bangding and Abdelfattah, Mohamed S and Perel, Sagi and Song, Xingyou},
57
+ journal={arXiv preprint arXiv:2506.21718},
58
+ year={2025}
59
+ }
60
+ ```
61
+
62
+ (Original Paper Coming Soon!)
63
+