Chris Oswald
commited on
Commit
·
fbb72cc
1
Parent(s):
38e8e2b
added raw image and mask objects
Browse files
SPIDER.py
CHANGED
|
@@ -24,6 +24,7 @@ import numpy as np
|
|
| 24 |
import pandas as pd
|
| 25 |
|
| 26 |
import datasets
|
|
|
|
| 27 |
import skimage
|
| 28 |
import SimpleITK as sitk
|
| 29 |
|
|
@@ -110,7 +111,7 @@ class CustomBuilderConfig(datasets.BuilderConfig):
|
|
| 110 |
class SPIDER(datasets.GeneratorBasedBuilder):
|
| 111 |
"""TODO: Short description of my dataset."""
|
| 112 |
|
| 113 |
-
DEFAULT_WRITER_BATCH_SIZE =
|
| 114 |
|
| 115 |
VERSION = datasets.Version("1.1.0")
|
| 116 |
|
|
@@ -169,9 +170,9 @@ class SPIDER(datasets.GeneratorBasedBuilder):
|
|
| 169 |
features = datasets.Features({
|
| 170 |
"patient_id": datasets.Value("string"),
|
| 171 |
"scan_type": datasets.Value("string"),
|
| 172 |
-
|
|
|
|
| 173 |
"image_array": datasets.Array3D(shape=image_size, dtype='float64'),
|
| 174 |
-
# "raw_mask": datasets.Image(),
|
| 175 |
"mask_array": datasets.Array3D(shape=image_size, dtype='float64'),
|
| 176 |
"metadata": {
|
| 177 |
"num_vertebrae": datasets.Value(dtype="string"), #TODO: more specific types
|
|
@@ -478,20 +479,34 @@ class SPIDER(datasets.GeneratorBasedBuilder):
|
|
| 478 |
image_path = os.path.join(paths_dict['images'], 'images', example)
|
| 479 |
image = sitk.ReadImage(image_path)
|
| 480 |
|
|
|
|
|
|
|
|
|
|
| 481 |
# Convert .mha image to standardized numeric array
|
| 482 |
-
|
| 483 |
-
|
|
|
|
| 484 |
)
|
| 485 |
|
|
|
|
|
|
|
|
|
|
| 486 |
# Load .mha mask file
|
| 487 |
mask_path = os.path.join(paths_dict['masks'], 'masks', example)
|
| 488 |
mask = sitk.ReadImage(mask_path)
|
| 489 |
|
|
|
|
|
|
|
|
|
|
| 490 |
# Convert .mha mask to standardized numeric array
|
| 491 |
-
|
| 492 |
-
|
|
|
|
| 493 |
)
|
| 494 |
-
|
|
|
|
|
|
|
|
|
|
| 495 |
# Extract overview data corresponding to image
|
| 496 |
image_overview = overview_dict[scan_id]
|
| 497 |
|
|
@@ -502,13 +517,13 @@ class SPIDER(datasets.GeneratorBasedBuilder):
|
|
| 502 |
return_dict = {
|
| 503 |
'patient_id':patient_id,
|
| 504 |
'scan_type':scan_type,
|
| 505 |
-
'raw_image':
|
| 506 |
-
'raw_mask':
|
| 507 |
-
'image_array':
|
| 508 |
-
'mask_array':
|
| 509 |
'metadata':image_overview,
|
| 510 |
'rad_gradings':patient_grades_dict,
|
| 511 |
-
|
| 512 |
|
| 513 |
# Yield example
|
| 514 |
yield scan_id, return_dict
|
|
|
|
| 24 |
import pandas as pd
|
| 25 |
|
| 26 |
import datasets
|
| 27 |
+
import PIL
|
| 28 |
import skimage
|
| 29 |
import SimpleITK as sitk
|
| 30 |
|
|
|
|
| 111 |
class SPIDER(datasets.GeneratorBasedBuilder):
|
| 112 |
"""TODO: Short description of my dataset."""
|
| 113 |
|
| 114 |
+
DEFAULT_WRITER_BATCH_SIZE = 16 # PyArrow default is too large for image data
|
| 115 |
|
| 116 |
VERSION = datasets.Version("1.1.0")
|
| 117 |
|
|
|
|
| 170 |
features = datasets.Features({
|
| 171 |
"patient_id": datasets.Value("string"),
|
| 172 |
"scan_type": datasets.Value("string"),
|
| 173 |
+
"raw_image": datasets.Image(decode=False),
|
| 174 |
+
"raw_mask": datasets.Image(decode=False),
|
| 175 |
"image_array": datasets.Array3D(shape=image_size, dtype='float64'),
|
|
|
|
| 176 |
"mask_array": datasets.Array3D(shape=image_size, dtype='float64'),
|
| 177 |
"metadata": {
|
| 178 |
"num_vertebrae": datasets.Value(dtype="string"), #TODO: more specific types
|
|
|
|
| 479 |
image_path = os.path.join(paths_dict['images'], 'images', example)
|
| 480 |
image = sitk.ReadImage(image_path)
|
| 481 |
|
| 482 |
+
# Convert .mha image to original size numeric array
|
| 483 |
+
image_array_original = sitk.GetArrayFromImage(image)
|
| 484 |
+
|
| 485 |
# Convert .mha image to standardized numeric array
|
| 486 |
+
image_array_standardized = standardize_3D_image(
|
| 487 |
+
image_array_original,
|
| 488 |
+
resize_shape,
|
| 489 |
)
|
| 490 |
|
| 491 |
+
# Create PIL image object of original image
|
| 492 |
+
PIL_original_image = PIL.Image.fromarray(image_array_original)
|
| 493 |
+
|
| 494 |
# Load .mha mask file
|
| 495 |
mask_path = os.path.join(paths_dict['masks'], 'masks', example)
|
| 496 |
mask = sitk.ReadImage(mask_path)
|
| 497 |
|
| 498 |
+
# Convert .mha mask to original size numeric array
|
| 499 |
+
mask_array_original = sitk.GetArrayFromImage(mask)
|
| 500 |
+
|
| 501 |
# Convert .mha mask to standardized numeric array
|
| 502 |
+
mask_array_standardized = standardize_3D_image(
|
| 503 |
+
mask_array_original,
|
| 504 |
+
resize_shape,
|
| 505 |
)
|
| 506 |
+
|
| 507 |
+
# Create PIL image object of original mask
|
| 508 |
+
PIL_original_mask = PIL.Image.fromarray(mask_array_original)
|
| 509 |
+
|
| 510 |
# Extract overview data corresponding to image
|
| 511 |
image_overview = overview_dict[scan_id]
|
| 512 |
|
|
|
|
| 517 |
return_dict = {
|
| 518 |
'patient_id':patient_id,
|
| 519 |
'scan_type':scan_type,
|
| 520 |
+
'raw_image':PIL_original_image,
|
| 521 |
+
'raw_mask':PIL_original_mask,
|
| 522 |
+
'image_array':image_array_standardized,
|
| 523 |
+
'mask_array':mask_array_standardized,
|
| 524 |
'metadata':image_overview,
|
| 525 |
'rad_gradings':patient_grades_dict,
|
| 526 |
+
}
|
| 527 |
|
| 528 |
# Yield example
|
| 529 |
yield scan_id, return_dict
|