Commit
·
501fbb8
0
Parent(s):
Duplicate from winogrande
Browse filesCo-authored-by: Parquet-converter (BOT) <parquet-converter@users.noreply.huggingface.co>
- .gitattributes +27 -0
- README.md +365 -0
- dataset_infos.json +1 -0
- winogrande.py +145 -0
.gitattributes
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,365 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
paperswithcode_id: winogrande
|
| 5 |
+
pretty_name: WinoGrande
|
| 6 |
+
dataset_info:
|
| 7 |
+
- config_name: winogrande_xs
|
| 8 |
+
features:
|
| 9 |
+
- name: sentence
|
| 10 |
+
dtype: string
|
| 11 |
+
- name: option1
|
| 12 |
+
dtype: string
|
| 13 |
+
- name: option2
|
| 14 |
+
dtype: string
|
| 15 |
+
- name: answer
|
| 16 |
+
dtype: string
|
| 17 |
+
splits:
|
| 18 |
+
- name: train
|
| 19 |
+
num_bytes: 20704
|
| 20 |
+
num_examples: 160
|
| 21 |
+
- name: test
|
| 22 |
+
num_bytes: 227649
|
| 23 |
+
num_examples: 1767
|
| 24 |
+
- name: validation
|
| 25 |
+
num_bytes: 164199
|
| 26 |
+
num_examples: 1267
|
| 27 |
+
download_size: 3395492
|
| 28 |
+
dataset_size: 412552
|
| 29 |
+
- config_name: winogrande_s
|
| 30 |
+
features:
|
| 31 |
+
- name: sentence
|
| 32 |
+
dtype: string
|
| 33 |
+
- name: option1
|
| 34 |
+
dtype: string
|
| 35 |
+
- name: option2
|
| 36 |
+
dtype: string
|
| 37 |
+
- name: answer
|
| 38 |
+
dtype: string
|
| 39 |
+
splits:
|
| 40 |
+
- name: train
|
| 41 |
+
num_bytes: 82308
|
| 42 |
+
num_examples: 640
|
| 43 |
+
- name: test
|
| 44 |
+
num_bytes: 227649
|
| 45 |
+
num_examples: 1767
|
| 46 |
+
- name: validation
|
| 47 |
+
num_bytes: 164199
|
| 48 |
+
num_examples: 1267
|
| 49 |
+
download_size: 3395492
|
| 50 |
+
dataset_size: 474156
|
| 51 |
+
- config_name: winogrande_m
|
| 52 |
+
features:
|
| 53 |
+
- name: sentence
|
| 54 |
+
dtype: string
|
| 55 |
+
- name: option1
|
| 56 |
+
dtype: string
|
| 57 |
+
- name: option2
|
| 58 |
+
dtype: string
|
| 59 |
+
- name: answer
|
| 60 |
+
dtype: string
|
| 61 |
+
splits:
|
| 62 |
+
- name: train
|
| 63 |
+
num_bytes: 329001
|
| 64 |
+
num_examples: 2558
|
| 65 |
+
- name: test
|
| 66 |
+
num_bytes: 227649
|
| 67 |
+
num_examples: 1767
|
| 68 |
+
- name: validation
|
| 69 |
+
num_bytes: 164199
|
| 70 |
+
num_examples: 1267
|
| 71 |
+
download_size: 3395492
|
| 72 |
+
dataset_size: 720849
|
| 73 |
+
- config_name: winogrande_l
|
| 74 |
+
features:
|
| 75 |
+
- name: sentence
|
| 76 |
+
dtype: string
|
| 77 |
+
- name: option1
|
| 78 |
+
dtype: string
|
| 79 |
+
- name: option2
|
| 80 |
+
dtype: string
|
| 81 |
+
- name: answer
|
| 82 |
+
dtype: string
|
| 83 |
+
splits:
|
| 84 |
+
- name: train
|
| 85 |
+
num_bytes: 1319576
|
| 86 |
+
num_examples: 10234
|
| 87 |
+
- name: test
|
| 88 |
+
num_bytes: 227649
|
| 89 |
+
num_examples: 1767
|
| 90 |
+
- name: validation
|
| 91 |
+
num_bytes: 164199
|
| 92 |
+
num_examples: 1267
|
| 93 |
+
download_size: 3395492
|
| 94 |
+
dataset_size: 1711424
|
| 95 |
+
- config_name: winogrande_xl
|
| 96 |
+
features:
|
| 97 |
+
- name: sentence
|
| 98 |
+
dtype: string
|
| 99 |
+
- name: option1
|
| 100 |
+
dtype: string
|
| 101 |
+
- name: option2
|
| 102 |
+
dtype: string
|
| 103 |
+
- name: answer
|
| 104 |
+
dtype: string
|
| 105 |
+
splits:
|
| 106 |
+
- name: train
|
| 107 |
+
num_bytes: 5185832
|
| 108 |
+
num_examples: 40398
|
| 109 |
+
- name: test
|
| 110 |
+
num_bytes: 227649
|
| 111 |
+
num_examples: 1767
|
| 112 |
+
- name: validation
|
| 113 |
+
num_bytes: 164199
|
| 114 |
+
num_examples: 1267
|
| 115 |
+
download_size: 3395492
|
| 116 |
+
dataset_size: 5577680
|
| 117 |
+
- config_name: winogrande_debiased
|
| 118 |
+
features:
|
| 119 |
+
- name: sentence
|
| 120 |
+
dtype: string
|
| 121 |
+
- name: option1
|
| 122 |
+
dtype: string
|
| 123 |
+
- name: option2
|
| 124 |
+
dtype: string
|
| 125 |
+
- name: answer
|
| 126 |
+
dtype: string
|
| 127 |
+
splits:
|
| 128 |
+
- name: train
|
| 129 |
+
num_bytes: 1203420
|
| 130 |
+
num_examples: 9248
|
| 131 |
+
- name: test
|
| 132 |
+
num_bytes: 227649
|
| 133 |
+
num_examples: 1767
|
| 134 |
+
- name: validation
|
| 135 |
+
num_bytes: 164199
|
| 136 |
+
num_examples: 1267
|
| 137 |
+
download_size: 3395492
|
| 138 |
+
dataset_size: 1595268
|
| 139 |
+
---
|
| 140 |
+
|
| 141 |
+
# Dataset Card for "winogrande"
|
| 142 |
+
|
| 143 |
+
## Table of Contents
|
| 144 |
+
- [Dataset Description](#dataset-description)
|
| 145 |
+
- [Dataset Summary](#dataset-summary)
|
| 146 |
+
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
| 147 |
+
- [Languages](#languages)
|
| 148 |
+
- [Dataset Structure](#dataset-structure)
|
| 149 |
+
- [Data Instances](#data-instances)
|
| 150 |
+
- [Data Fields](#data-fields)
|
| 151 |
+
- [Data Splits](#data-splits)
|
| 152 |
+
- [Dataset Creation](#dataset-creation)
|
| 153 |
+
- [Curation Rationale](#curation-rationale)
|
| 154 |
+
- [Source Data](#source-data)
|
| 155 |
+
- [Annotations](#annotations)
|
| 156 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
| 157 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
| 158 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
| 159 |
+
- [Discussion of Biases](#discussion-of-biases)
|
| 160 |
+
- [Other Known Limitations](#other-known-limitations)
|
| 161 |
+
- [Additional Information](#additional-information)
|
| 162 |
+
- [Dataset Curators](#dataset-curators)
|
| 163 |
+
- [Licensing Information](#licensing-information)
|
| 164 |
+
- [Citation Information](#citation-information)
|
| 165 |
+
- [Contributions](#contributions)
|
| 166 |
+
|
| 167 |
+
## Dataset Description
|
| 168 |
+
|
| 169 |
+
- **Homepage:** [https://leaderboard.allenai.org/winogrande/submissions/get-started](https://leaderboard.allenai.org/winogrande/submissions/get-started)
|
| 170 |
+
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
| 171 |
+
- **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
| 172 |
+
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
| 173 |
+
- **Size of downloaded dataset files:** 20.37 MB
|
| 174 |
+
- **Size of the generated dataset:** 10.50 MB
|
| 175 |
+
- **Total amount of disk used:** 30.87 MB
|
| 176 |
+
|
| 177 |
+
### Dataset Summary
|
| 178 |
+
|
| 179 |
+
WinoGrande is a new collection of 44k problems, inspired by Winograd Schema Challenge (Levesque, Davis, and Morgenstern
|
| 180 |
+
2011), but adjusted to improve the scale and robustness against the dataset-specific bias. Formulated as a
|
| 181 |
+
fill-in-a-blank task with binary options, the goal is to choose the right option for a given sentence which requires
|
| 182 |
+
commonsense reasoning.
|
| 183 |
+
|
| 184 |
+
### Supported Tasks and Leaderboards
|
| 185 |
+
|
| 186 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
| 187 |
+
|
| 188 |
+
### Languages
|
| 189 |
+
|
| 190 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
| 191 |
+
|
| 192 |
+
## Dataset Structure
|
| 193 |
+
|
| 194 |
+
### Data Instances
|
| 195 |
+
|
| 196 |
+
#### winogrande_debiased
|
| 197 |
+
|
| 198 |
+
- **Size of downloaded dataset files:** 3.40 MB
|
| 199 |
+
- **Size of the generated dataset:** 1.59 MB
|
| 200 |
+
- **Total amount of disk used:** 4.99 MB
|
| 201 |
+
|
| 202 |
+
An example of 'train' looks as follows.
|
| 203 |
+
```
|
| 204 |
+
|
| 205 |
+
```
|
| 206 |
+
|
| 207 |
+
#### winogrande_l
|
| 208 |
+
|
| 209 |
+
- **Size of downloaded dataset files:** 3.40 MB
|
| 210 |
+
- **Size of the generated dataset:** 1.71 MB
|
| 211 |
+
- **Total amount of disk used:** 5.11 MB
|
| 212 |
+
|
| 213 |
+
An example of 'validation' looks as follows.
|
| 214 |
+
```
|
| 215 |
+
|
| 216 |
+
```
|
| 217 |
+
|
| 218 |
+
#### winogrande_m
|
| 219 |
+
|
| 220 |
+
- **Size of downloaded dataset files:** 3.40 MB
|
| 221 |
+
- **Size of the generated dataset:** 0.72 MB
|
| 222 |
+
- **Total amount of disk used:** 4.12 MB
|
| 223 |
+
|
| 224 |
+
An example of 'validation' looks as follows.
|
| 225 |
+
```
|
| 226 |
+
|
| 227 |
+
```
|
| 228 |
+
|
| 229 |
+
#### winogrande_s
|
| 230 |
+
|
| 231 |
+
- **Size of downloaded dataset files:** 3.40 MB
|
| 232 |
+
- **Size of the generated dataset:** 0.47 MB
|
| 233 |
+
- **Total amount of disk used:** 3.87 MB
|
| 234 |
+
|
| 235 |
+
An example of 'validation' looks as follows.
|
| 236 |
+
```
|
| 237 |
+
|
| 238 |
+
```
|
| 239 |
+
|
| 240 |
+
#### winogrande_xl
|
| 241 |
+
|
| 242 |
+
- **Size of downloaded dataset files:** 3.40 MB
|
| 243 |
+
- **Size of the generated dataset:** 5.58 MB
|
| 244 |
+
- **Total amount of disk used:** 8.98 MB
|
| 245 |
+
|
| 246 |
+
An example of 'train' looks as follows.
|
| 247 |
+
```
|
| 248 |
+
|
| 249 |
+
```
|
| 250 |
+
|
| 251 |
+
### Data Fields
|
| 252 |
+
|
| 253 |
+
The data fields are the same among all splits.
|
| 254 |
+
|
| 255 |
+
#### winogrande_debiased
|
| 256 |
+
- `sentence`: a `string` feature.
|
| 257 |
+
- `option1`: a `string` feature.
|
| 258 |
+
- `option2`: a `string` feature.
|
| 259 |
+
- `answer`: a `string` feature.
|
| 260 |
+
|
| 261 |
+
#### winogrande_l
|
| 262 |
+
- `sentence`: a `string` feature.
|
| 263 |
+
- `option1`: a `string` feature.
|
| 264 |
+
- `option2`: a `string` feature.
|
| 265 |
+
- `answer`: a `string` feature.
|
| 266 |
+
|
| 267 |
+
#### winogrande_m
|
| 268 |
+
- `sentence`: a `string` feature.
|
| 269 |
+
- `option1`: a `string` feature.
|
| 270 |
+
- `option2`: a `string` feature.
|
| 271 |
+
- `answer`: a `string` feature.
|
| 272 |
+
|
| 273 |
+
#### winogrande_s
|
| 274 |
+
- `sentence`: a `string` feature.
|
| 275 |
+
- `option1`: a `string` feature.
|
| 276 |
+
- `option2`: a `string` feature.
|
| 277 |
+
- `answer`: a `string` feature.
|
| 278 |
+
|
| 279 |
+
#### winogrande_xl
|
| 280 |
+
- `sentence`: a `string` feature.
|
| 281 |
+
- `option1`: a `string` feature.
|
| 282 |
+
- `option2`: a `string` feature.
|
| 283 |
+
- `answer`: a `string` feature.
|
| 284 |
+
|
| 285 |
+
### Data Splits
|
| 286 |
+
|
| 287 |
+
| name |train|validation|test|
|
| 288 |
+
|-------------------|----:|---------:|---:|
|
| 289 |
+
|winogrande_debiased| 9248| 1267|1767|
|
| 290 |
+
|winogrande_l |10234| 1267|1767|
|
| 291 |
+
|winogrande_m | 2558| 1267|1767|
|
| 292 |
+
|winogrande_s | 640| 1267|1767|
|
| 293 |
+
|winogrande_xl |40398| 1267|1767|
|
| 294 |
+
|winogrande_xs | 160| 1267|1767|
|
| 295 |
+
|
| 296 |
+
## Dataset Creation
|
| 297 |
+
|
| 298 |
+
### Curation Rationale
|
| 299 |
+
|
| 300 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
| 301 |
+
|
| 302 |
+
### Source Data
|
| 303 |
+
|
| 304 |
+
#### Initial Data Collection and Normalization
|
| 305 |
+
|
| 306 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
| 307 |
+
|
| 308 |
+
#### Who are the source language producers?
|
| 309 |
+
|
| 310 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
| 311 |
+
|
| 312 |
+
### Annotations
|
| 313 |
+
|
| 314 |
+
#### Annotation process
|
| 315 |
+
|
| 316 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
| 317 |
+
|
| 318 |
+
#### Who are the annotators?
|
| 319 |
+
|
| 320 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
| 321 |
+
|
| 322 |
+
### Personal and Sensitive Information
|
| 323 |
+
|
| 324 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
| 325 |
+
|
| 326 |
+
## Considerations for Using the Data
|
| 327 |
+
|
| 328 |
+
### Social Impact of Dataset
|
| 329 |
+
|
| 330 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
| 331 |
+
|
| 332 |
+
### Discussion of Biases
|
| 333 |
+
|
| 334 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
| 335 |
+
|
| 336 |
+
### Other Known Limitations
|
| 337 |
+
|
| 338 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
| 339 |
+
|
| 340 |
+
## Additional Information
|
| 341 |
+
|
| 342 |
+
### Dataset Curators
|
| 343 |
+
|
| 344 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
| 345 |
+
|
| 346 |
+
### Licensing Information
|
| 347 |
+
|
| 348 |
+
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
| 349 |
+
|
| 350 |
+
### Citation Information
|
| 351 |
+
|
| 352 |
+
```
|
| 353 |
+
@InProceedings{ai2:winogrande,
|
| 354 |
+
title = {WinoGrande: An Adversarial Winograd Schema Challenge at Scale},
|
| 355 |
+
authors={Keisuke, Sakaguchi and Ronan, Le Bras and Chandra, Bhagavatula and Yejin, Choi
|
| 356 |
+
},
|
| 357 |
+
year={2019}
|
| 358 |
+
}
|
| 359 |
+
|
| 360 |
+
```
|
| 361 |
+
|
| 362 |
+
|
| 363 |
+
### Contributions
|
| 364 |
+
|
| 365 |
+
Thanks to [@thomwolf](https://github.com/thomwolf), [@TevenLeScao](https://github.com/TevenLeScao), [@patrickvonplaten](https://github.com/patrickvonplaten), [@lewtun](https://github.com/lewtun) for adding this dataset.
|
dataset_infos.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"winogrande_xs": {"description": "WinoGrande is a new collection of 44k problems, inspired by Winograd Schema Challenge (Levesque, Davis, and Morgenstern\n 2011), but adjusted to improve the scale and robustness against the dataset-specific bias. Formulated as a\nfill-in-a-blank task with binary options, the goal is to choose the right option for a given sentence which requires\ncommonsense reasoning.\n", "citation": "@InProceedings{ai2:winogrande,\ntitle = {WinoGrande: An Adversarial Winograd Schema Challenge at Scale},\nauthors={Keisuke, Sakaguchi and Ronan, Le Bras and Chandra, Bhagavatula and Yejin, Choi\n},\nyear={2019}\n}\n", "homepage": "https://leaderboard.allenai.org/winogrande/submissions/get-started", "license": "", "features": {"sentence": {"dtype": "string", "id": null, "_type": "Value"}, "option1": {"dtype": "string", "id": null, "_type": "Value"}, "option2": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "winogrande", "config_name": "winogrande_xs", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 20704, "num_examples": 160, "dataset_name": "winogrande"}, "test": {"name": "test", "num_bytes": 227649, "num_examples": 1767, "dataset_name": "winogrande"}, "validation": {"name": "validation", "num_bytes": 164199, "num_examples": 1267, "dataset_name": "winogrande"}}, "download_checksums": {"https://storage.googleapis.com/ai2-mosaic/public/winogrande/winogrande_1.1.zip": {"num_bytes": 3395492, "checksum": "3619ab104d8be2977b25c90ff420cb42d491707dcc75362a1e5d22bc082b7318"}}, "download_size": 3395492, "post_processing_size": null, "dataset_size": 412552, "size_in_bytes": 3808044}, "winogrande_s": {"description": "WinoGrande is a new collection of 44k problems, inspired by Winograd Schema Challenge (Levesque, Davis, and Morgenstern\n 2011), but adjusted to improve the scale and robustness against the dataset-specific bias. Formulated as a\nfill-in-a-blank task with binary options, the goal is to choose the right option for a given sentence which requires\ncommonsense reasoning.\n", "citation": "@InProceedings{ai2:winogrande,\ntitle = {WinoGrande: An Adversarial Winograd Schema Challenge at Scale},\nauthors={Keisuke, Sakaguchi and Ronan, Le Bras and Chandra, Bhagavatula and Yejin, Choi\n},\nyear={2019}\n}\n", "homepage": "https://leaderboard.allenai.org/winogrande/submissions/get-started", "license": "", "features": {"sentence": {"dtype": "string", "id": null, "_type": "Value"}, "option1": {"dtype": "string", "id": null, "_type": "Value"}, "option2": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "winogrande", "config_name": "winogrande_s", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 82308, "num_examples": 640, "dataset_name": "winogrande"}, "test": {"name": "test", "num_bytes": 227649, "num_examples": 1767, "dataset_name": "winogrande"}, "validation": {"name": "validation", "num_bytes": 164199, "num_examples": 1267, "dataset_name": "winogrande"}}, "download_checksums": {"https://storage.googleapis.com/ai2-mosaic/public/winogrande/winogrande_1.1.zip": {"num_bytes": 3395492, "checksum": "3619ab104d8be2977b25c90ff420cb42d491707dcc75362a1e5d22bc082b7318"}}, "download_size": 3395492, "post_processing_size": null, "dataset_size": 474156, "size_in_bytes": 3869648}, "winogrande_m": {"description": "WinoGrande is a new collection of 44k problems, inspired by Winograd Schema Challenge (Levesque, Davis, and Morgenstern\n 2011), but adjusted to improve the scale and robustness against the dataset-specific bias. Formulated as a\nfill-in-a-blank task with binary options, the goal is to choose the right option for a given sentence which requires\ncommonsense reasoning.\n", "citation": "@InProceedings{ai2:winogrande,\ntitle = {WinoGrande: An Adversarial Winograd Schema Challenge at Scale},\nauthors={Keisuke, Sakaguchi and Ronan, Le Bras and Chandra, Bhagavatula and Yejin, Choi\n},\nyear={2019}\n}\n", "homepage": "https://leaderboard.allenai.org/winogrande/submissions/get-started", "license": "", "features": {"sentence": {"dtype": "string", "id": null, "_type": "Value"}, "option1": {"dtype": "string", "id": null, "_type": "Value"}, "option2": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "winogrande", "config_name": "winogrande_m", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 329001, "num_examples": 2558, "dataset_name": "winogrande"}, "test": {"name": "test", "num_bytes": 227649, "num_examples": 1767, "dataset_name": "winogrande"}, "validation": {"name": "validation", "num_bytes": 164199, "num_examples": 1267, "dataset_name": "winogrande"}}, "download_checksums": {"https://storage.googleapis.com/ai2-mosaic/public/winogrande/winogrande_1.1.zip": {"num_bytes": 3395492, "checksum": "3619ab104d8be2977b25c90ff420cb42d491707dcc75362a1e5d22bc082b7318"}}, "download_size": 3395492, "post_processing_size": null, "dataset_size": 720849, "size_in_bytes": 4116341}, "winogrande_l": {"description": "WinoGrande is a new collection of 44k problems, inspired by Winograd Schema Challenge (Levesque, Davis, and Morgenstern\n 2011), but adjusted to improve the scale and robustness against the dataset-specific bias. Formulated as a\nfill-in-a-blank task with binary options, the goal is to choose the right option for a given sentence which requires\ncommonsense reasoning.\n", "citation": "@InProceedings{ai2:winogrande,\ntitle = {WinoGrande: An Adversarial Winograd Schema Challenge at Scale},\nauthors={Keisuke, Sakaguchi and Ronan, Le Bras and Chandra, Bhagavatula and Yejin, Choi\n},\nyear={2019}\n}\n", "homepage": "https://leaderboard.allenai.org/winogrande/submissions/get-started", "license": "", "features": {"sentence": {"dtype": "string", "id": null, "_type": "Value"}, "option1": {"dtype": "string", "id": null, "_type": "Value"}, "option2": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "winogrande", "config_name": "winogrande_l", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1319576, "num_examples": 10234, "dataset_name": "winogrande"}, "test": {"name": "test", "num_bytes": 227649, "num_examples": 1767, "dataset_name": "winogrande"}, "validation": {"name": "validation", "num_bytes": 164199, "num_examples": 1267, "dataset_name": "winogrande"}}, "download_checksums": {"https://storage.googleapis.com/ai2-mosaic/public/winogrande/winogrande_1.1.zip": {"num_bytes": 3395492, "checksum": "3619ab104d8be2977b25c90ff420cb42d491707dcc75362a1e5d22bc082b7318"}}, "download_size": 3395492, "post_processing_size": null, "dataset_size": 1711424, "size_in_bytes": 5106916}, "winogrande_xl": {"description": "WinoGrande is a new collection of 44k problems, inspired by Winograd Schema Challenge (Levesque, Davis, and Morgenstern\n 2011), but adjusted to improve the scale and robustness against the dataset-specific bias. Formulated as a\nfill-in-a-blank task with binary options, the goal is to choose the right option for a given sentence which requires\ncommonsense reasoning.\n", "citation": "@InProceedings{ai2:winogrande,\ntitle = {WinoGrande: An Adversarial Winograd Schema Challenge at Scale},\nauthors={Keisuke, Sakaguchi and Ronan, Le Bras and Chandra, Bhagavatula and Yejin, Choi\n},\nyear={2019}\n}\n", "homepage": "https://leaderboard.allenai.org/winogrande/submissions/get-started", "license": "", "features": {"sentence": {"dtype": "string", "id": null, "_type": "Value"}, "option1": {"dtype": "string", "id": null, "_type": "Value"}, "option2": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "winogrande", "config_name": "winogrande_xl", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 5185832, "num_examples": 40398, "dataset_name": "winogrande"}, "test": {"name": "test", "num_bytes": 227649, "num_examples": 1767, "dataset_name": "winogrande"}, "validation": {"name": "validation", "num_bytes": 164199, "num_examples": 1267, "dataset_name": "winogrande"}}, "download_checksums": {"https://storage.googleapis.com/ai2-mosaic/public/winogrande/winogrande_1.1.zip": {"num_bytes": 3395492, "checksum": "3619ab104d8be2977b25c90ff420cb42d491707dcc75362a1e5d22bc082b7318"}}, "download_size": 3395492, "post_processing_size": null, "dataset_size": 5577680, "size_in_bytes": 8973172}, "winogrande_debiased": {"description": "WinoGrande is a new collection of 44k problems, inspired by Winograd Schema Challenge (Levesque, Davis, and Morgenstern\n 2011), but adjusted to improve the scale and robustness against the dataset-specific bias. Formulated as a\nfill-in-a-blank task with binary options, the goal is to choose the right option for a given sentence which requires\ncommonsense reasoning.\n", "citation": "@InProceedings{ai2:winogrande,\ntitle = {WinoGrande: An Adversarial Winograd Schema Challenge at Scale},\nauthors={Keisuke, Sakaguchi and Ronan, Le Bras and Chandra, Bhagavatula and Yejin, Choi\n},\nyear={2019}\n}\n", "homepage": "https://leaderboard.allenai.org/winogrande/submissions/get-started", "license": "", "features": {"sentence": {"dtype": "string", "id": null, "_type": "Value"}, "option1": {"dtype": "string", "id": null, "_type": "Value"}, "option2": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "winogrande", "config_name": "winogrande_debiased", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1203420, "num_examples": 9248, "dataset_name": "winogrande"}, "test": {"name": "test", "num_bytes": 227649, "num_examples": 1767, "dataset_name": "winogrande"}, "validation": {"name": "validation", "num_bytes": 164199, "num_examples": 1267, "dataset_name": "winogrande"}}, "download_checksums": {"https://storage.googleapis.com/ai2-mosaic/public/winogrande/winogrande_1.1.zip": {"num_bytes": 3395492, "checksum": "3619ab104d8be2977b25c90ff420cb42d491707dcc75362a1e5d22bc082b7318"}}, "download_size": 3395492, "post_processing_size": null, "dataset_size": 1595268, "size_in_bytes": 4990760}}
|
winogrande.py
ADDED
|
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""TODO(winogrande): Add a description here."""
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
import json
|
| 5 |
+
import os
|
| 6 |
+
|
| 7 |
+
import datasets
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
# TODO(winogrande): BibTeX citation
|
| 11 |
+
_CITATION = """\
|
| 12 |
+
@InProceedings{ai2:winogrande,
|
| 13 |
+
title = {WinoGrande: An Adversarial Winograd Schema Challenge at Scale},
|
| 14 |
+
authors={Keisuke, Sakaguchi and Ronan, Le Bras and Chandra, Bhagavatula and Yejin, Choi
|
| 15 |
+
},
|
| 16 |
+
year={2019}
|
| 17 |
+
}
|
| 18 |
+
"""
|
| 19 |
+
|
| 20 |
+
# TODO(winogrande):
|
| 21 |
+
_DESCRIPTION = """\
|
| 22 |
+
WinoGrande is a new collection of 44k problems, inspired by Winograd Schema Challenge (Levesque, Davis, and Morgenstern
|
| 23 |
+
2011), but adjusted to improve the scale and robustness against the dataset-specific bias. Formulated as a
|
| 24 |
+
fill-in-a-blank task with binary options, the goal is to choose the right option for a given sentence which requires
|
| 25 |
+
commonsense reasoning.
|
| 26 |
+
"""
|
| 27 |
+
|
| 28 |
+
_URL = "https://storage.googleapis.com/ai2-mosaic/public/winogrande/winogrande_1.1.zip"
|
| 29 |
+
_FORMATS = ["xs", "s", "m", "l", "xl", "debiased"]
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
class WinograndeConfig(datasets.BuilderConfig):
|
| 33 |
+
|
| 34 |
+
"""BuilderConfig for Discofuse"""
|
| 35 |
+
|
| 36 |
+
def __init__(self, data_size, **kwargs):
|
| 37 |
+
"""
|
| 38 |
+
|
| 39 |
+
Args:
|
| 40 |
+
data_size: the format of the training set we want to use (xs, s, m, l, xl, debiased)
|
| 41 |
+
**kwargs: keyword arguments forwarded to super.
|
| 42 |
+
"""
|
| 43 |
+
super(WinograndeConfig, self).__init__(version=datasets.Version("1.1.0", ""), **kwargs)
|
| 44 |
+
self.data_size = data_size
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
class Winogrande(datasets.GeneratorBasedBuilder):
|
| 48 |
+
"""TODO(winogrande): Short description of my dataset."""
|
| 49 |
+
|
| 50 |
+
# TODO(winogrande): Set up version.
|
| 51 |
+
VERSION = datasets.Version("1.1.0")
|
| 52 |
+
BUILDER_CONFIGS = [
|
| 53 |
+
WinograndeConfig(name="winogrande_" + data_size, description="AI2 dataset", data_size=data_size)
|
| 54 |
+
for data_size in _FORMATS
|
| 55 |
+
]
|
| 56 |
+
|
| 57 |
+
def _info(self):
|
| 58 |
+
# TODO(winogrande): Specifies the datasets.DatasetInfo object
|
| 59 |
+
return datasets.DatasetInfo(
|
| 60 |
+
# This is the description that will appear on the datasets page.
|
| 61 |
+
description=_DESCRIPTION,
|
| 62 |
+
# datasets.features.FeatureConnectors
|
| 63 |
+
features=datasets.Features(
|
| 64 |
+
{
|
| 65 |
+
"sentence": datasets.Value("string"),
|
| 66 |
+
"option1": datasets.Value("string"),
|
| 67 |
+
"option2": datasets.Value("string"),
|
| 68 |
+
"answer": datasets.Value("string")
|
| 69 |
+
# These are the features of your dataset like images, labels ...
|
| 70 |
+
}
|
| 71 |
+
),
|
| 72 |
+
# If there's a common (input, target) tuple from the features,
|
| 73 |
+
# specify them here. They'll be used if as_supervised=True in
|
| 74 |
+
# builder.as_dataset.
|
| 75 |
+
supervised_keys=None,
|
| 76 |
+
# Homepage of the dataset for documentation
|
| 77 |
+
homepage="https://leaderboard.allenai.org/winogrande/submissions/get-started",
|
| 78 |
+
citation=_CITATION,
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
def _split_generators(self, dl_manager):
|
| 82 |
+
"""Returns SplitGenerators."""
|
| 83 |
+
# TODO(winogrande): Downloads the data and defines the splits
|
| 84 |
+
# dl_manager is a datasets.download.DownloadManager that can be used to
|
| 85 |
+
# download and extract URLs
|
| 86 |
+
dl_dir = dl_manager.download_and_extract(_URL)
|
| 87 |
+
data_dir = os.path.join(dl_dir, "winogrande_1.1")
|
| 88 |
+
return [
|
| 89 |
+
datasets.SplitGenerator(
|
| 90 |
+
name=datasets.Split.TRAIN,
|
| 91 |
+
# These kwargs will be passed to _generate_examples
|
| 92 |
+
gen_kwargs={
|
| 93 |
+
"filepath": os.path.join(data_dir, f"train_{self.config.data_size}.jsonl"),
|
| 94 |
+
# 'labelpath': os.path.join(data_dir, 'train_{}-labels.lst'.format(self.config.data_size)),
|
| 95 |
+
"split": "train",
|
| 96 |
+
},
|
| 97 |
+
),
|
| 98 |
+
datasets.SplitGenerator(
|
| 99 |
+
name=datasets.Split.TEST,
|
| 100 |
+
# These kwargs will be passed to _generate_examples
|
| 101 |
+
gen_kwargs={"filepath": os.path.join(data_dir, "test.jsonl"), "split": "test"},
|
| 102 |
+
),
|
| 103 |
+
datasets.SplitGenerator(
|
| 104 |
+
name=datasets.Split.VALIDATION,
|
| 105 |
+
# These kwargs will be passed to _generate_examples
|
| 106 |
+
gen_kwargs={
|
| 107 |
+
"filepath": os.path.join(data_dir, "dev.jsonl"),
|
| 108 |
+
# 'labelpath': os.path.join(data_dir, 'dev-labels.lst'),
|
| 109 |
+
"split": "dev",
|
| 110 |
+
},
|
| 111 |
+
),
|
| 112 |
+
]
|
| 113 |
+
|
| 114 |
+
def _generate_examples(self, filepath, split):
|
| 115 |
+
"""Yields examples."""
|
| 116 |
+
# TODO(winogrande): Yields (key, example) tuples from the dataset
|
| 117 |
+
with open(filepath, encoding="utf-8") as f:
|
| 118 |
+
for id_, row in enumerate(f):
|
| 119 |
+
data = json.loads(row)
|
| 120 |
+
if split == "test":
|
| 121 |
+
yield id_, {
|
| 122 |
+
"sentence": data["sentence"],
|
| 123 |
+
"option1": data["option1"],
|
| 124 |
+
"option2": data["option2"],
|
| 125 |
+
"answer": "",
|
| 126 |
+
}
|
| 127 |
+
else:
|
| 128 |
+
yield id_, {
|
| 129 |
+
"sentence": data["sentence"],
|
| 130 |
+
"option1": data["option1"],
|
| 131 |
+
"option2": data["option2"],
|
| 132 |
+
"answer": data["answer"],
|
| 133 |
+
}
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
# def _generate_test_example(filepath, split, labelpath=None):
|
| 137 |
+
# with open(filepath, encoding="utf-8") as f:
|
| 138 |
+
# for id_, row in enumerate(f):
|
| 139 |
+
# data = json.loads(row)
|
| 140 |
+
# yield id_,{
|
| 141 |
+
# 'sentence': data['sentence'],
|
| 142 |
+
# 'option1': data['option1'],
|
| 143 |
+
# 'option2': data['option2'],
|
| 144 |
+
# 'answer': None
|
| 145 |
+
# }
|