Dataset Viewer
Auto-converted to Parquet Duplicate
patient_id
stringlengths
9
9
age_years
int64
0
85
age_months
float64
1
1.02k
age_group
stringclasses
4 values
sex
stringclasses
2 values
residence
stringclasses
2 values
season
stringclasses
2 values
uses_mosquito_net
bool
2 classes
malaria_status
stringclasses
2 values
parasitemia_level
stringclasses
3 values
parasitemia_count
int64
0
382k
plasmodium_species
stringclasses
3 values
hemoglobin_g_dl
float64
4
18
anemia_status
stringclasses
2 values
fever_days
int64
0
10
has_fever
bool
2 classes
has_chills
bool
2 classes
has_headache
bool
2 classes
has_vomiting
bool
2 classes
has_diarrhea
bool
2 classes
has_weakness
bool
2 classes
severe_malaria
bool
2 classes
cerebral_malaria
bool
2 classes
respiratory_distress
bool
2 classes
shock
bool
2 classes
acute_kidney_injury
bool
2 classes
outcome
stringclasses
4 values
malaria_probability_score
float64
0.1
0.95
MAL000001
2
35
2-6
Male
Rural
Rainy
false
Negative
null
0
null
12.3
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.95
MAL000002
5
64
2-6
Female
Urban
Dry
true
Negative
null
0
null
12.4
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.118
MAL000003
3
43
2-6
Female
Rural
Rainy
true
Positive
Moderate
36,336
P. vivax
9.6
Moderate
2
true
true
true
true
false
true
false
false
false
false
false
Treated
0.546
MAL000004
32
388
12+
Male
Rural
Dry
false
Negative
null
0
null
14.6
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.364
MAL000005
15
182
12+
Male
Rural
Rainy
false
Negative
null
0
null
13.8
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.728
MAL000006
34
408
12+
Female
Rural
Rainy
false
Positive
Moderate
11,631
P. falciparum
10.8
null
5
true
false
true
false
false
false
false
false
false
false
false
Treated
0.728
MAL000007
4
50
2-6
Male
Rural
Rainy
true
Negative
null
0
null
12.1
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.546
MAL000008
0
2
0-2
Female
Rural
Dry
true
Negative
null
0
null
16.2
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.273
MAL000009
14
173
12+
Male
Rural
Rainy
true
Negative
null
0
null
14
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.437
MAL000010
9
119
6-12
Female
Rural
Dry
false
Negative
null
0
null
13.3
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.437
MAL000011
41
500
12+
Female
Rural
Rainy
true
Negative
null
0
null
12.2
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.364
MAL000012
8
101
6-12
Male
Rural
Rainy
false
Positive
Moderate
23,603
P. falciparum
9.5
Moderate
4
true
true
false
true
false
true
false
false
false
false
false
Treated
0.874
MAL000013
6
72
6-12
Female
Rural
Rainy
false
Positive
Low
1,054
P. falciparum
11.6
null
4
true
true
true
false
false
true
false
false
false
false
false
Treated
0.874
MAL000014
16
194
12+
Female
Rural
Rainy
false
Positive
Moderate
30,145
P. falciparum
11.7
null
4
true
true
true
false
false
true
false
false
false
false
false
Treated
0.728
MAL000015
23
278
12+
Female
Rural
Rainy
true
Positive
Moderate
5,125
P. vivax
10.8
null
5
true
true
true
false
false
true
false
false
false
false
false
Treated
0.364
MAL000016
8
100
6-12
Female
Rural
Dry
true
Negative
null
0
null
11.6
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.218
MAL000017
10
123
6-12
Female
Urban
Dry
true
Negative
null
0
null
11.5
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.118
MAL000018
25
307
12+
Male
Rural
Dry
true
Negative
null
0
null
14.3
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.182
MAL000019
9
110
6-12
Female
Rural
Rainy
true
Positive
High
138,704
P. falciparum
6.6
Severe
4
true
true
true
false
true
true
false
false
false
false
false
Treated
0.437
MAL000020
7
94
6-12
Male
Rural
Rainy
false
Positive
Low
50
P. falciparum
11.8
null
3
true
true
true
true
true
false
true
false
false
false
false
Hospitalized
0.874
MAL000021
8
99
6-12
Female
Urban
Dry
true
Negative
null
0
null
11.1
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.118
MAL000022
1
20
0-2
Female
Rural
Rainy
false
Positive
High
212,604
P. falciparum
7.9
Moderate
1
true
true
false
true
false
true
false
false
false
false
false
Treated
0.95
MAL000023
6
72
6-12
Female
Rural
Rainy
false
Positive
High
166,532
P. falciparum
7.2
Moderate
2
true
true
true
false
true
true
false
false
false
false
false
Treated
0.874
MAL000024
45
545
12+
Female
Rural
Dry
false
Positive
Moderate
26,420
P. falciparum
10.1
null
3
true
true
false
true
false
false
false
false
false
false
false
Treated
0.364
MAL000025
6
72
6-12
Female
Rural
Dry
false
Positive
Moderate
15,657
P. falciparum
9.1
Moderate
5
true
true
true
false
true
true
false
false
false
false
false
Treated
0.437
MAL000026
21
258
12+
Male
Rural
Dry
true
Negative
null
0
null
12.9
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.182
MAL000027
5
64
2-6
Male
Rural
Dry
false
Negative
null
0
null
12.9
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.437
MAL000028
33
403
12+
Male
Rural
Rainy
false
Negative
null
0
null
14.4
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.728
MAL000029
20
249
12+
Male
Rural
Rainy
false
Negative
null
0
null
14.6
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.728
MAL000030
10
123
6-12
Female
Rural
Dry
false
Positive
High
111,877
P. falciparum
7.5
Moderate
8
true
true
true
false
false
true
false
false
false
false
false
Treated
0.437
MAL000031
2
26
2-6
Female
Rural
Dry
false
Negative
null
0
null
11.4
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.546
MAL000032
5
67
2-6
Male
Rural
Dry
true
Negative
null
0
null
12.4
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.218
MAL000033
29
357
12+
Male
Rural
Rainy
true
Positive
Low
1,912
P. falciparum
12.7
null
1
true
false
true
true
false
false
false
false
false
false
false
Treated
0.364
MAL000034
8
102
6-12
Male
Rural
Rainy
false
Positive
Moderate
39,995
P. vivax
10.7
null
1
true
true
false
false
false
true
false
false
false
false
false
Treated
0.874
MAL000035
25
308
12+
Female
Rural
Dry
false
Negative
null
0
null
12.8
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.364
MAL000036
12
145
12+
Male
Rural
Dry
false
Positive
Moderate
15,796
P. falciparum
12.7
null
1
true
true
true
false
false
true
false
false
false
false
false
Treated
0.437
MAL000037
8
98
6-12
Female
Rural
Dry
false
Negative
null
0
null
13.5
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.437
MAL000038
6
72
6-12
Female
Rural
Rainy
false
Negative
null
0
null
12.8
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.874
MAL000039
15
183
12+
Male
Rural
Dry
true
Negative
null
0
null
14.6
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.182
MAL000040
6
77
6-12
Male
Urban
Rainy
false
Positive
Low
605
P. falciparum
11.5
null
1
true
true
true
true
false
true
false
false
false
false
false
Treated
0.47
MAL000041
6
72
6-12
Male
Rural
Dry
false
Positive
Low
50
P. vivax
10.8
null
7
true
true
true
false
true
true
false
false
false
false
false
Treated
0.437
MAL000042
39
474
12+
Female
Rural
Dry
true
Negative
null
0
null
14.1
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.182
MAL000043
1
24
0-2
Female
Rural
Rainy
true
Positive
High
240,743
P. falciparum
8.6
Moderate
3
true
true
false
true
false
true
true
false
false
false
false
Hospitalized
0.546
MAL000044
6
72
6-12
Male
Urban
Rainy
true
Positive
Moderate
24,515
P. falciparum
9.4
Moderate
4
true
true
false
false
false
true
false
false
false
false
false
Treated
0.235
MAL000045
21
256
12+
Male
Rural
Dry
false
Negative
null
0
null
16.9
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.364
MAL000046
5
70
2-6
Female
Urban
Rainy
false
Negative
null
0
null
12.6
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.47
MAL000047
23
288
12+
Male
Rural
Rainy
false
Positive
Moderate
21,574
P. falciparum
12.9
null
6
true
true
true
false
true
false
false
false
false
false
false
Treated
0.728
MAL000048
11
142
6-12
Female
Rural
Dry
false
Positive
Moderate
29,156
P. falciparum
10.3
null
1
true
true
true
false
true
false
false
false
false
false
false
Treated
0.437
MAL000049
24
295
12+
Female
Rural
Dry
false
Negative
null
0
null
11.6
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.364
MAL000050
16
194
12+
Male
Rural
Rainy
true
Negative
null
0
null
14.9
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.364
MAL000051
2
31
2-6
Male
Rural
Rainy
true
Positive
Low
430
P. falciparum
11
null
4
true
true
false
true
false
true
false
false
false
false
false
Treated
0.546
MAL000052
13
162
12+
Male
Rural
Rainy
true
Negative
null
0
null
14.5
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.437
MAL000053
22
272
12+
Male
Rural
Rainy
false
Positive
High
138,918
P. falciparum
9.5
Moderate
4
true
true
true
false
true
true
false
false
false
false
false
Treated
0.728
MAL000054
9
112
6-12
Male
Urban
Rainy
false
Negative
null
0
null
13.2
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.47
MAL000055
10
123
6-12
Male
Rural
Rainy
false
Positive
Moderate
10,831
P. vivax
11.3
null
4
true
true
true
false
true
true
false
false
false
false
false
Treated
0.874
MAL000056
6
72
6-12
Female
Rural
Rainy
true
Negative
null
0
null
12.7
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.437
MAL000057
1
17
0-2
Male
Rural
Rainy
false
Positive
Moderate
40,226
P. falciparum
9.8
Moderate
2
true
true
false
false
false
false
true
false
false
false
false
Hospitalized
0.95
MAL000058
6
83
6-12
Male
Rural
Dry
false
Positive
High
168,698
P. falciparum
10.1
null
3
true
true
true
true
false
true
false
false
false
false
false
Treated
0.437
MAL000059
11
144
6-12
Female
Rural
Dry
false
Positive
Moderate
27,809
P. falciparum
10.8
null
2
true
false
true
true
true
true
false
false
false
false
false
Treated
0.437
MAL000060
6
72
6-12
Female
Rural
Rainy
true
Positive
Low
1,293
P. falciparum
11.2
null
3
true
false
true
false
false
false
true
true
false
false
false
Hospitalized
0.437
MAL000061
18
228
12+
Male
Urban
Rainy
true
Negative
null
0
null
15.5
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.196
MAL000062
0
6
0-2
Female
Rural
Dry
false
Positive
High
195,192
P. falciparum
9.1
Moderate
7
true
false
false
true
false
true
true
false
false
false
false
Hospitalized
0.546
MAL000063
20
241
12+
Male
Urban
Rainy
true
Negative
null
0
null
14.9
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.196
MAL000064
6
72
6-12
Female
Rural
Rainy
true
Negative
null
0
null
11.7
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.437
MAL000065
16
196
12+
Female
Rural
Dry
true
Negative
null
0
null
15.1
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.182
MAL000066
1
24
0-2
Female
Rural
Rainy
false
Positive
Moderate
16,226
P. falciparum
8.7
Moderate
3
true
true
false
false
true
true
false
false
false
false
false
Treated
0.95
MAL000067
14
175
12+
Male
Rural
Dry
false
Negative
null
0
null
13.1
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.437
MAL000068
6
72
6-12
Female
Rural
Rainy
false
Positive
High
100,001
Mixed
4.9
Severe
2
true
true
false
true
false
true
false
false
false
false
false
Treated
0.874
MAL000069
6
78
6-12
Male
Urban
Dry
false
Negative
null
0
null
12.2
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.235
MAL000070
6
72
6-12
Female
Rural
Rainy
false
Positive
Low
1,288
P. falciparum
10.8
null
3
true
true
true
false
true
true
false
false
false
false
false
Treated
0.874
MAL000071
6
72
6-12
Female
Rural
Rainy
false
Positive
Moderate
21,974
P. falciparum
10
Moderate
4
true
true
true
false
false
true
false
false
false
false
false
Treated
0.874
MAL000072
17
215
12+
Male
Rural
Rainy
false
Positive
Low
1,278
P. vivax
13.3
null
2
true
true
true
false
false
true
false
false
false
false
false
Treated
0.728
MAL000073
17
216
12+
Female
Rural
Dry
true
Negative
null
0
null
11.5
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.182
MAL000074
6
72
6-12
Female
Rural
Dry
true
Negative
null
0
null
11.5
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.218
MAL000075
9
117
6-12
Male
Rural
Rainy
true
Negative
null
0
null
11.1
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.437
MAL000076
0
5
0-2
Male
Rural
Dry
false
Negative
null
0
null
17.8
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.546
MAL000077
14
179
12+
Female
Rural
Rainy
false
Positive
Moderate
27,680
P. falciparum
10.3
null
4
true
true
true
true
true
true
false
false
false
false
false
Treated
0.874
MAL000078
9
116
6-12
Male
Rural
Dry
false
Negative
null
0
null
12.2
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.437
MAL000079
10
122
6-12
Male
Rural
Rainy
true
Positive
Low
1,208
P. falciparum
11.3
null
1
true
true
false
false
false
false
false
false
false
false
false
Treated
0.437
MAL000080
45
548
12+
Female
Rural
Rainy
false
Positive
Moderate
8,928
P. falciparum
9.9
Moderate
3
true
false
true
true
false
true
false
false
false
false
false
Treated
0.728
MAL000081
2
29
2-6
Female
Rural
Rainy
false
Positive
High
130,001
P. falciparum
7.3
Moderate
3
false
true
false
false
false
false
false
false
false
false
false
Treated
0.95
MAL000082
21
252
12+
Male
Rural
Rainy
false
Negative
null
0
null
15.2
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.728
MAL000083
6
72
6-12
Female
Rural
Dry
false
Negative
null
0
null
13.3
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.437
MAL000084
2
35
2-6
Male
Rural
Dry
false
Negative
null
0
null
11
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.546
MAL000085
5
71
2-6
Female
Rural
Rainy
false
Positive
Low
1,029
P. falciparum
10.4
null
6
true
true
true
false
false
false
false
false
false
false
false
Treated
0.874
MAL000086
11
140
6-12
Female
Rural
Rainy
false
Positive
Low
2,105
P. vivax
11.1
null
4
true
true
true
true
false
true
false
false
false
false
false
Treated
0.874
MAL000087
12
148
12+
Male
Urban
Rainy
true
Negative
null
0
null
15.4
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.235
MAL000088
7
95
6-12
Male
Rural
Dry
false
Negative
null
0
null
13.2
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.437
MAL000089
1
21
0-2
Male
Urban
Dry
false
Negative
null
0
null
12.1
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.294
MAL000090
9
119
6-12
Female
Rural
Rainy
true
Negative
null
0
null
11.6
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.437
MAL000091
3
41
2-6
Male
Urban
Dry
false
Negative
null
0
null
11.9
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.294
MAL000092
3
37
2-6
Female
Rural
Rainy
true
Positive
Moderate
16,564
P. falciparum
9.7
Moderate
6
true
true
false
false
false
true
false
false
false
false
false
Treated
0.546
MAL000093
6
72
6-12
Female
Rural
Dry
true
Negative
null
0
null
14
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.218
MAL000094
13
163
12+
Female
Rural
Dry
false
Negative
null
0
null
13.7
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.437
MAL000095
21
263
12+
Male
Rural
Rainy
false
Negative
null
0
null
13
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.728
MAL000096
18
227
12+
Female
Rural
Rainy
true
Negative
null
0
null
14
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.364
MAL000097
10
127
6-12
Male
Rural
Rainy
false
Negative
null
0
null
11.3
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.874
MAL000098
14
175
12+
Male
Rural
Rainy
false
Negative
null
0
null
13.8
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.874
MAL000099
13
166
12+
Male
Rural
Rainy
false
Positive
Moderate
37,482
P. falciparum
12.2
null
2
true
false
false
false
false
false
false
false
false
false
false
Treated
0.874
MAL000100
8
106
6-12
Female
Rural
Dry
false
Negative
null
0
null
11.5
null
0
false
false
false
false
false
false
false
false
false
false
false
Healthy
0.437
End of preview. Expand in Data Studio

African Malaria Synthetic Dataset

A Literature-Informed Probabilistic Approach to Malaria Detection and Severity Prediction

Version: 1.0
Release Date: November 2024
Context: Sub-Saharan African Epidemiology
License: Research & Educational Use


Abstract

We present synthetic datasets for malaria detection and severity prediction in Sub-Saharan Africa, generated using literature-informed probabilistic modeling based on 2024 epidemiological research. Malaria remains the leading cause of childhood mortality in Africa, with 263 million cases globally in 2023, predominantly in Sub-Saharan countries. The datasets incorporate age-specific distributions (Log-normal for children, Weibull for adults), parasitemia levels, clinical presentations, and risk factors documented in recent peer-reviewed studies from Ethiopia, Tanzania, and multi-country systematic reviews. With estimated incidence rates of 60.4 per 1,000 population at risk and mortality rates of 9.33 per 1,000 children annually, early detection and severity assessment are critical for treatment decisions. Our synthetic generation approach enables algorithm development for resource-limited settings where longitudinal data collection faces substantial barriers. Seven datasets (varied sizes and endemic scenarios) provide configurations for diagnostic algorithms, severity prediction, and seasonal variation analysis. These data support development of ML models for malaria screening, parasitemia estimation, and severe case identification—serving as proof-of-concept for deployment in African healthcare settings.

Keywords: Malaria, P. falciparum, Synthetic Data, African Health, Machine Learning, Parasitemia, Severe Malaria, Low-Resource Settings


1. Introduction

1.1 Clinical Context

Malaria, caused primarily by Plasmodium falciparum in Africa, affects over 263 million people globally, with the African region bearing 94% of cases and 95% of deaths (WHO 2024). Key epidemiological features include:

  • Age vulnerability: Children under 5 account for 80% of malaria deaths
  • Endemic transmission: Incidence rates reach 400+ per 100,000 in peak countries
  • Preventable mortality: 9.33 deaths per 1,000 children annually in stable endemic areas
  • Seasonal variation: 60% of cases occur during rainy seasons

Early detection and accurate severity assessment are critical for appropriate treatment (artemisinin-based therapy vs. parenteral artesunate for severe cases).

1.2 Data Collection Challenges

Real-world malaria dataset construction in African settings faces:

  • Diagnostic limitations: Microscopy requires skilled technicians; RDTs have sensitivity issues
  • Parasitemia quantification: Labor-intensive microscopy; automated counters rare
  • Seasonal variation: Data collection must span multiple transmission seasons
  • Healthcare access: Rural populations (85.7% of cases) have delayed presentations
  • Resource constraints: Limited laboratory capacity for culture confirmation (31.8% rate)

1.3 Synthetic Data Rationale

We employ literature-informed synthetic generation as a scaffold for:

  1. Diagnostic algorithm development: Severity prediction models without waiting for longitudinal cohorts
  2. Resource allocation: Demonstrate ML feasibility for funding applications
  3. Clinical decision support: Identify critical features (parasitemia, hemoglobin, age) for risk stratification
  4. Training optimization: Balance class distributions for rare severe cases (5-15%)

This approach accelerates deployment-ready tools while real validation studies are conducted.


2. Methodology

2.1 Generation Framework

Probabilistic Sampling with Epidemiological Constraints

We extract statistical distributions from published meta-analyses and cohort studies, implementing Monte Carlo sampling:

For each sample i:
  1. Age_i ~ Bimodal(Children: LogNormal(μ=1.91, σ=1.20), 
                     Adults: Weibull(k=1.01, λ=11.89))
  2. Sex_i ~ Bernoulli(p_male = 0.589)
  3. Risk_factors_i ~ {Residence, Season, Mosquito_net}
  4. P(Malaria|features_i) = f(Age, Residence, Season, Protection)
  5. Malaria_i ~ Bernoulli(P(Malaria|features_i))
  6. If Malaria_i:
       - Parasitemia_level ~ Categorical([0.238, 0.631, 0.131])
       - Species ~ Categorical([0.785, 0.161, 0.054])
       - Hemoglobin ~ Normal(age_specific_mean - parasitemia_effect)
       - Severe ~ f(Age, Parasitemia, Species)

2.2 Age Distribution Parameters

Derived from Global Burden of Disease 2019 + Malaria Journal 2023

Age follows bimodal distribution reflecting African epidemiology:

Age Group % Distribution Statistical Model Parameters
0-2 years 15.4% Log-normal μ = 1.9144, σ = 1.1995
2-6 years 30.5% Log-normal (same parameters, age-capped)
6-12 years 17.6% Weibull k = 1.007, λ = 11.8898
≥12 years 36.5% Weibull (shifted distribution)

Rationale: Young children lack immunity; all ages susceptible in endemic areas.

2.3 Malaria Probability Model

Base prevalence adjusted by epidemiological risk factors:

P_base = malaria_prevalence  # 0.20 (low) to 0.60 (hyperendemic)

# Age effects (immunological vulnerability)
if age < 5: P_base *= 1.5
elif age < 15: P_base *= 1.2

# Geographic risk (transmission intensity)
if residence == 'Rural': P_base *= 1.3
else: P_base *= 0.7  # Urban: lower transmission

# Seasonal variation
if season == 'Rainy': P_base *= 1.4
else: P_base *= 0.7

# Preventive measures
if uses_mosquito_net: P_base *= 0.5  # 50% efficacy

P_final = min(P_base, 0.95)

2.4 Clinical Parameters

Parasitemia Levels (Ethiopian Study 2022)

Distribution: Low 23.8%, Moderate 63.1%, High 13.1%

Level Parasites/μL Range Clinical Significance
Low 50 - 5,000 Asymptomatic/mild symptoms
Moderate 5,001 - 100,000 Uncomplicated malaria
High 100,001 - 500,000 Risk of severe complications

Hyperparasitemia (>200,000/μL): 2-3× mortality risk

Plasmodium Species (Africa-specific)

  • P. falciparum: 78.5% (cerebral malaria risk, drug resistance)
  • P. vivax: 16.1% (relapsing, East Africa)
  • Mixed infection: 5.4% (complicated treatment)

Hemoglobin Correlation

Malaria-induced anemia:

  • Low parasitemia: Hb drop 1.5 ± 0.5 g/dL
  • Moderate: Hb drop 2.5 ± 0.8 g/dL
  • High: Hb drop 4.0 ± 1.2 g/dL

Severe anemia (Hb <7 g/dL): Transfusion required, 30% of severe cases

2.5 Severe Malaria Criteria

WHO Definition (one or more):

  • Cerebral malaria (20% of severe cases in our model)
  • Respiratory distress (15%)
  • Shock/circulatory collapse (10%)
  • Acute kidney injury (12%, adults predominantly)
  • Severe anemia (Hb <7 g/dL)
  • Hyperparasitemia (>10% infected RBCs or >200,000/μL)

Incidence: 5% baseline, increased to 15-40% with risk factors:

  • Age <5 years: 3× risk
  • High parasitemia: 2.5× risk
  • Parasitemia >200,000/μL: Additional 1.5× risk

2.6 Mortality Rates

Age-stratified (from NCBI Disease and Mortality SSA):

Age Group Rate per 1,000/year % of Age Group Deaths
<5 years 9.33 28.2%
5-14 years 1.58 52.2%
≥15 years 0.60 6.0%

Modifiers:

  • Severe malaria: 10× baseline risk
  • Hyperparasitemia: 2× additional risk
  • Delayed treatment: >3 days fever → 1.5× risk

2.7 Feature Set

28 features across six categories:

  • Demographics (6): patient_id, age_years, age_months, age_group, sex, residence
  • Epidemiological (2): season, uses_mosquito_net
  • Laboratory (5): malaria_status, parasitemia_level, parasitemia_count, plasmodium_species, hemoglobin_g_dl
  • Anemia (1): anemia_status (None/Moderate/Severe)
  • Clinical Symptoms (7): fever_days, has_fever, has_chills, has_headache, has_vomiting, has_diarrhea, has_weakness
  • Severe Complications (5): severe_malaria, cerebral_malaria, respiratory_distress, shock, acute_kidney_injury
  • Outcome (2): outcome (Healthy/Treated/Hospitalized/Died), malaria_probability_score

Target variables:

  • Classification: malaria_status (Positive/Negative)
  • Severity: severe_malaria (Boolean)
  • Outcome: outcome (4-class)

3. Dataset Collection

3.1 Dataset Inventory

Seven datasets provide varied experimental configurations:

Dataset N Malaria+ % Endemic Level Use Case
malaria_ssa_baseline_1000 1,000 ~400 40% High endemic Rapid prototyping
malaria_ssa_large_5000 5,000 ~2,000 40% High endemic Main training
malaria_ssa_extra_large_10000 10,000 ~4,000 40% High endemic Deep learning
malaria_ssa_low_endemic_2000 2,000 ~400 20% Low endemic Low transmission areas
malaria_ssa_hyperendemic_2000 2,000 ~1,200 60% Hyperendemic Peak transmission zones
malaria_ssa_seasonal_rainy_1000 1,000 ~400 40% Rainy season Seasonal modeling
malaria_ssa_test_2000 2,000 ~400 40% Hold-out validation Independent test set

Critical: Test dataset uses different random state and must never be used for training.

3.2 Class Distribution Analysis

Typical high-endemic dataset (baseline_1000):

  • Negative cases: ~600 (60%)
  • Positive cases: ~400 (40%)
    • Uncomplicated: ~340 (85%)
    • Severe: ~60 (15%)
    • Deaths: ~5-10 (1-2% of positive)

Imbalance considerations:

  • Severe malaria is minority class (15% of positives)
  • Deaths are extremely rare (requiring oversampling or focal loss)
  • Age stratification: Under-5 overrepresented in severe cases

3.3 Quality Control

Validation checks implemented in generator:

  1. Age-parasitemia correlation: Children <5 have 30% higher mean parasitemia
  2. Hemoglobin-parasitemia inverse relationship: Pearson r ≈ -0.65
  3. Species-geography consistency: P. falciparum dominance (78.5%)
  4. Mortality-severity alignment: No deaths without elevated risk factors
  5. Seasonal variation: Rainy season 1.4× prevalence vs. dry

3.4 Feature Importance (Expected)

Based on epidemiological literature:

Top predictors for malaria diagnosis:

  1. Fever presence/duration (AUC ~0.85 alone)
  2. Age group (children <5 vs. adults)
  3. Season + mosquito net (preventive behaviors)
  4. Residence (rural vs. urban)

Top predictors for severity:

  1. Parasitemia count (most critical)
  2. Age <5 years
  3. Hemoglobin level
  4. Days to presentation

4. Experimental Considerations

4.1 Recommended Train/Test Splits

Option A: Single endemic level

  • Train: malaria_ssa_large_5000 (5,000 samples)
  • Validation: 20% holdout from training set
  • Test: malaria_ssa_test_2000 (2,000 samples, independent seed)

Option B: Multi-endemic training

  • Train: Combine high_endemic + low_endemic (7,000 samples)
  • Test: hyperendemic_2000 (transfer learning evaluation)

Option C: Temporal simulation

  • Train: seasonal_rainy_1000 (dry season held out)
  • Test: Synthetic "dry season" variant (adjusted prevalence)

4.2 Model Architecture Suggestions

Task 1: Malaria Detection (Binary Classification)

Baseline: Logistic Regression with age, fever, season, residence
Target: AUC-ROC > 0.85

Advanced: XGBoost/Random Forest with full feature set
Target: AUC-ROC > 0.92, Sensitivity > 0.95 (critical for screening)

Task 2: Severity Prediction (Binary on Positive Cases)

Baseline: Decision Tree on parasitemia + age + hemoglobin
Target: AUC-ROC > 0.80

Advanced: Gradient Boosting with interaction terms
Target: AUC-ROC > 0.90, Specificity > 0.85 (avoid unnecessary referrals)

Task 3: Outcome Prediction (4-class)

Advanced: Multi-class XGBoost or Neural Network
Evaluation: Macro F1-score, weighted by class importance

4.3 Class Imbalance Mitigation

Severe malaria (15% of positive cases):

  • SMOTE: Synthetic minority oversampling
  • Focal Loss: γ=2 to down-weight easy negatives
  • Class weights: Inverse frequency weighting (1:6 severe:uncomplicated)

Deaths (<2% of samples):

  • Stratified k-fold: Preserve death cases in each fold
  • Ensemble methods: Boosting to focus on hard cases
  • Threshold tuning: Optimize F1 at cost-sensitive threshold

4.4 Feature Engineering Recommendations

Derived features to create:

  1. Age-parasitemia interaction: age_under5 * log(parasitemia + 1)
  2. Severity risk score: (parasitemia/100000) * (1 if age<5 else 0.5) * (15-hemoglobin)/5
  3. Endemic index: residence_rural * season_rainy * (1-mosquito_net)
  4. Anemia severity: Categorical encoding of Hb levels

Domain knowledge rules:

  • No fever but high parasitemia → Asymptomatic (rare, model should learn)
  • Fever >7 days → Likely treatment failure or co-infection
  • Cerebral malaria without high parasitemia → Suspicious (data quality flag)

5. Validation & Limitations

5.1 Expected Model Performance

Realistic targets based on synthetic data quality:

Task Metric Expected Range Clinical Threshold
Malaria detection AUC-ROC 0.88-0.94 >0.90 for deployment
Sensitivity 0.92-0.98 >0.95 (screening priority)
Specificity 0.75-0.88 >0.80 (RDT parity)
Severity prediction AUC-ROC 0.85-0.92 >0.85 for triage
PPV 0.60-0.75 Balance false alarms

Note: Performance on real data expected to be 5-10% lower due to:

  • Measurement noise (microscopy variability)
  • Missing values (lab equipment failures)
  • Co-infections (not modeled)
  • Drug-resistant parasites (emerging, not in model)

5.2 Synthetic Data Limitations

Known simplifications:

  1. Independence assumption: Risk factors generated independently (reality: clustered in families/villages)
  2. No drug resistance: Assumes treatment-sensitive parasites
  3. Single infection: No co-morbidities (HIV, malnutrition) modeled
  4. Perfect measurement: No lab error, RDT false positives/negatives
  5. Stable transmission: No epidemic spikes or intervention campaigns

Not suitable for:

  • Policy cost-effectiveness modeling (no treatment pathways)
  • Drug resistance surveillance (no genotype data)
  • Entomological correlation (no vector data)

5.3 Real-World Validation Requirements

Before clinical deployment, models must be validated on:

  1. Prospective cohort: ≥500 patients with confirmed microscopy + RDT
  2. Multi-site: Rural + urban facilities (3+ sites)
  3. Seasonal coverage: Both rainy and dry seasons
  4. External validation: Different geographic region (test generalization)
  5. Clinical impact: Diagnostic accuracy, time-to-treatment, cost per case

Ethical imperative: Synthetic models are research tools only until real-world safety/efficacy demonstrated.


6. Use Cases & Applications

6.1 Clinical Decision Support

Triage at point-of-care:

  • Input: Age, fever duration, season, residence, recent travel
  • Output: Malaria risk score (0-100%)
  • Action: If >70% → RDT recommended, If >90% → Presumptive treatment

Severity prediction:

  • Input: RDT+, parasitemia (if available), hemoglobin, age
  • Output: Severe malaria probability
  • Action: If >30% → Refer to hospital, If >50% → Immediate IV artesunate

6.2 Resource Allocation

Laboratory prioritization:

  • Predict which RDT+ patients need microscopy (parasitemia quantification)
  • Allocate limited reagents to high-risk cases

Seasonal preparedness:

  • Train on rainy season data → Predict bed needs, drug stockpiles
  • Early warning systems (integrate with weather data)

6.3 Research & Training

Algorithm comparison:

  • Benchmark new ML methods on standardized datasets
  • Reproducible experiments (fixed random seed)

Medical education:

  • Teach malaria epidemiology with interactive data exploration
  • Simulate outbreak scenarios for public health training

7. Implementation Guide

7.1 Quick Start

Generate default dataset:

cd Malaria/
python malaria_data_generator.py -n 1000 -p 0.40 -s 42
# Output: malaria_synthetic_ssa_YYYYMMDD_HHMMSS.csv

Generate all standard datasets:

python generate_datasets.py
# Generates 7 datasets with varied configurations

Parameters:

  • -n, --num-samples: Dataset size (default: 1000)
  • -p, --prevalence: Malaria prevalence 0.0-1.0 (default: 0.40)
  • -o, --output: Custom filename (optional)
  • -s, --seed: Random seed for reproducibility (optional)

7.2 Loading Data

Python (pandas):

import pandas as pd

# Load dataset
df = pd.read_csv('malaria_ssa_baseline_1000.csv')

# Binary classification task
X = df.drop(['patient_id', 'malaria_status', 'outcome'], axis=1)
y = (df['malaria_status'] == 'Positive').astype(int)

# Severity prediction (positive cases only)
df_positive = df[df['malaria_status'] == 'Positive']
X_severity = df_positive[['parasitemia_count', 'age_years', 'hemoglobin_g_dl']]
y_severity = df_positive['severe_malaria'].astype(int)

R:

library(tidyverse)

df <- read_csv("malaria_ssa_baseline_1000.csv")

# Preprocessing
df <- df %>%
  mutate(
    malaria = as.factor(if_else(malaria_status == "Positive", 1, 0)),
    age_group = as.factor(age_group),
    severe = as.factor(severe_malaria)
  )

7.3 Baseline Models

Scikit-learn pipeline:

from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score
from sklearn.preprocessing import LabelEncoder

# Encode categorical variables
le = LabelEncoder()
X_encoded = X.copy()
for col in ['age_group', 'sex', 'residence', 'season']:
    X_encoded[col] = le.fit_transform(X[col])

# Train Random Forest
rf = RandomForestClassifier(n_estimators=100, max_depth=10, random_state=42)
scores = cross_val_score(rf, X_encoded, y, cv=5, scoring='roc_auc')
print(f"Mean AUC-ROC: {scores.mean():.3f} (+/- {scores.std():.3f})")

8. Citation & References

8.1 Citing This Dataset

@misc{malaria_synthetic_africa_2024,
  title={African Malaria Synthetic Dataset: Literature-Informed Probabilistic Modeling},
  author={[Your Team]},
  year={2024},
  note={Based on GBD 2019, WHO 2024, and African epidemiological studies}
}

8.2 Source Literature

Age distributions:

  1. Malaria Journal (2023). "Estimated distribution of malaria cases among children in SSA by age." DOI: 10.1186/s12936-023-04811-z

Clinical parameters: 2. PMC9391188 (2022). "Malaria Infection, Parasitemia, and Hemoglobin Levels in Febrile Patients, Ethiopia" 3. NCBI NBK2286. "Disease and Mortality in Sub-Saharan Africa: Malaria Chapter"

Epidemiology: 4. WHO World Malaria Report (2024). Global prevalence, incidence, mortality data 5. GBD 2019 (IHME). Age-stratified burden estimates for Sub-Saharan Africa

Statistical distributions: 6. Log-normal parameters (μ=1.9144, σ=1.1995) from GBD meta-analysis 7. Weibull parameters (k=1.007, λ=11.8898) fitted to age-prevalence curves


9. Contact & Support

Dataset Issues: Report bugs or inconsistencies via project repository
Clinical Questions: Consult WHO malaria treatment guidelines
Model Development: Share results to improve future dataset versions

Disclaimer: This is synthetic data for research/training purposes only. NOT validated for clinical use. Real-world deployment requires prospective validation with ethical approval.


Last Updated: November 2024
Version: 1.0
Status: Initial release for algorithm development

Downloads last month
107