VibecoderMcSwaggins commited on
Commit
783bff7
·
verified ·
1 Parent(s): 0705957

Add dataset card with full documentation

Browse files
Files changed (1) hide show
  1. README.md +236 -0
README.md ADDED
@@ -0,0 +1,236 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ task_categories:
4
+ - text-classification
5
+ tags:
6
+ - biology
7
+ - proteins
8
+ - antibody
9
+ - immunology
10
+ - polyreactivity
11
+ - non-specificity
12
+ - ELISA
13
+ - protein-language-model
14
+ - esm
15
+ - novo-nordisk
16
+ pretty_name: Boughter Antibody Polyreactivity Dataset (Novo Nordisk Preprocessing)
17
+ size_categories:
18
+ - n<1K
19
+ dataset_info:
20
+ features:
21
+ - name: sequence
22
+ dtype: string
23
+ - name: label
24
+ dtype: float64
25
+ splits:
26
+ - name: train
27
+ num_examples: 914
28
+ config_name: default
29
+ ---
30
+
31
+ # Boughter Antibody Polyreactivity Dataset (Novo Nordisk Preprocessing)
32
+
33
+ ## Dataset Description
34
+
35
+ - **Homepage:** [Hugging Science Organization](https://huggingface.co/hugging-science)
36
+ - **Repository (this implementation):** [The-Obstacle-Is-The-Way/antibody_training_pipeline_ESM](https://github.com/The-Obstacle-Is-The-Way/antibody_training_pipeline_ESM)
37
+ - **Upstream:** [ludocomito/antibody_training_pipeline_ESM](https://github.com/ludocomito/antibody_training_pipeline_ESM)
38
+ - **Paper (Original Dataset):** [Boughter et al. 2020, eLife](https://doi.org/10.7554/eLife.61393)
39
+ - **Paper (Preprocessing Methodology):** [Sakhnini et al. 2025, bioRxiv](https://doi.org/10.1101/2025.04.28.650927)
40
+ - **Point of Contact:** [Hugging Science](https://huggingface.co/hugging-science)
41
+
42
+ ### Dataset Summary
43
+
44
+ This dataset contains **914 antibody heavy chain variable domain (VH) sequences** with binary polyreactivity labels, preprocessed according to the methodology described in **Sakhnini et al. 2025** (Novo Nordisk & University of Cambridge). The dataset was originally published by **Boughter et al. 2020** and contains mouse antibodies with ELISA-based polyreactivity measurements against a panel of 4–7 antigens (commonly described as: DNA, insulin, LPS, flagellin, albumin, cardiolipin, KLH).
45
+
46
+ **This is the preprocessed version used for training the ESM-1v + Logistic Regression model that predicts antibody non-specificity.**
47
+
48
+ ### Key Features
49
+
50
+ - **Organism:** Mouse (*Mus musculus*)
51
+ - **Molecule Type:** Antibody heavy chain variable domain (VH)
52
+ - **Assay:** ELISA polyreactivity panel (4–7 antigens: DNA, insulin, LPS, flagellin, albumin, cardiolipin, KLH)
53
+ - **Labels:** Binary classification (0 = specific, 1 = non-specific/polyreactive)
54
+ - **Annotation:** ANARCI with IMGT numbering scheme
55
+ - **Balance:** Well-balanced (48.5% specific, 51.5% non-specific)
56
+
57
+ ### Supported Tasks and Leaderboards
58
+
59
+ - **Binary Classification:** Predicting antibody polyreactivity/non-specificity from sequence
60
+ - **Benchmark:** Novo Nordisk parity benchmark (71% 10-fold CV accuracy)
61
+
62
+ ### Languages
63
+
64
+ Protein sequences (amino acid alphabet)
65
+
66
+ ## Dataset Structure
67
+
68
+ ### Data Instances
69
+
70
+ ```json
71
+ {
72
+ "sequence": "EVQLVESGGGLVKPGGSLRLSCSASGFTFSSYTMHWVRQAPGKGLEWLSSISSSSAYIYYADSVKGRFTVSRDNAKKSLYLQMDSLRAEDTAIYFCARDGTSLTVAGPLDYWGQGTLVTVSS",
73
+ "label": 0.0
74
+ }
75
+ ```
76
+
77
+ ### Data Fields
78
+
79
+ | Field | Type | Description |
80
+ |-------|------|-------------|
81
+ | `sequence` | string | Antibody VH amino acid sequence (IMGT-annotated) |
82
+ | `label` | float | Binary label: 0.0 = specific (0 ELISA flags), 1.0 = non-specific (4+ ELISA flags) |
83
+
84
+ ### Data Splits
85
+
86
+ | Split | Examples | Label 0 (Specific) | Label 1 (Non-specific) |
87
+ |-------|----------|--------------------|-----------------------|
88
+ | train | 914 | 443 (48.5%) | 471 (51.5%) |
89
+
90
+ ## Dataset Creation
91
+
92
+ ### Curation Rationale
93
+
94
+ This dataset was created to enable training of machine learning models for predicting antibody polyreactivity from sequence alone. The preprocessing follows the methodology described in Sakhnini et al. 2025, which demonstrated that ESM-1v embeddings combined with logistic regression can predict antibody non-specificity with ~71% accuracy.
95
+
96
+ ### Source Data
97
+
98
+ #### Original Data Collection
99
+
100
+ The original sequences were collected from six mouse antibody subsets by Boughter et al. 2020:
101
+ 1. **Influenza-reactive** (flu): 379 sequences
102
+ 2. **HIV NAT** (hiv_nat): 134 sequences
103
+ 3. **HIV Control** (hiv_cntrl): 50 sequences
104
+ 4. **HIV PLOS** (hiv_plos): 52 sequences
105
+ 5. **Gut HIV** (gut_hiv): 75 sequences
106
+ 6. **Mouse IgA** (mouse_iga): 481 sequences
107
+
108
+ **Total raw sequences:** 1,171
109
+
110
+ #### Preprocessing Pipeline (Novo Nordisk Methodology)
111
+
112
+ The following preprocessing was applied according to Sakhnini et al. 2025:
113
+
114
+ | Stage | Description | Sequences |
115
+ |-------|-------------|-----------|
116
+ | 1. DNA Translation | Translate DNA nucleotide sequences to protein | 1,171 → 1,117 (95.4%) |
117
+ | 2. ANARCI Annotation | Annotate using ANARCI with IMGT numbering | 1,117 → 1,110 (99.4%) |
118
+ | 3. Quality Control | Remove sequences with X in CDRs or empty CDRs | 1,110 → 1,065 (95.9%) |
119
+ | 4. Novo Flagging | Keep only 0 flags (specific) and 4+ flags (non-specific) | 1,065 → 914 (85.8%) |
120
+
121
+ **Critical:** Sequences with 1-3 ELISA flags (mildly polyreactive) were **excluded** from training per Novo Nordisk methodology.
122
+
123
+ #### ELISA Polyreactivity Panel
124
+
125
+ Antibodies were tested against a panel of up to 7 biochemically diverse antigens:
126
+ - DNA (negatively charged)
127
+ - Insulin (negatively charged)
128
+ - LPS (lipopolysaccharide - amphipathic)
129
+ - Flagellin (large protein)
130
+ - Albumin (negatively charged)
131
+ - Cardiolipin (amphipathic lipid)
132
+ - KLH (keyhole limpet hemocyanin - large, polar)
133
+
134
+ **Flagging Strategy:**
135
+ - **0 flags** → Specific (label=0) - INCLUDE
136
+ - **1-3 flags** → Mildly polyreactive - **EXCLUDE**
137
+ - **4+ flags** → Non-specific (label=1) - INCLUDE
138
+
139
+ ### Annotations
140
+
141
+ #### Annotation Process
142
+
143
+ 1. **DNA Translation:** Standard genetic code translation
144
+ 2. **ANARCI Annotation:** IMGT numbering scheme applied to identify CDR and framework regions
145
+ 3. **Quality Control:** Based on Boughter's seq_loader.py methodology:
146
+ - Remove sequences with 'X' (ambiguous amino acid) in any CDR
147
+ - Remove sequences with empty CDR regions
148
+ 4. **Label Assignment:** Binary labels based on ELISA flag count
149
+
150
+ #### Who are the annotators?
151
+
152
+ - **Original ELISA assays:** Boughter et al. 2020 (University of Chicago)
153
+ - **Preprocessing pipeline:** Based on Sakhnini et al. 2025 (Novo Nordisk & University of Cambridge)
154
+ - **This preprocessing:** CLARITY-DIGITAL-TWIN project (reproducing Novo methodology)
155
+
156
+ ### Personal and Sensitive Information
157
+
158
+ This dataset contains mouse antibody sequences only. No human sequences or personal information is included.
159
+
160
+ ## Considerations for Using the Data
161
+
162
+ ### Social Impact of Dataset
163
+
164
+ This dataset enables development of computational tools to predict antibody developability, potentially accelerating therapeutic antibody discovery and reducing animal testing by enabling in-silico screening.
165
+
166
+ ### Discussion of Biases
167
+
168
+ 1. **Species Bias:** All sequences are from mouse (*Mus musculus*), which may not generalize to human or humanized antibodies
169
+ 2. **Assay Bias:** ELISA-based polyreactivity may not capture all forms of non-specificity
170
+ 3. **Selection Bias:** Sequences with 1-3 flags were excluded, potentially removing informative borderline cases
171
+ 4. **Panel Bias:** The 7-antigen panel may not represent all potential off-target interactions
172
+
173
+ ### Other Known Limitations
174
+
175
+ 1. **VH Only:** This dataset contains only heavy chain sequences; light chain information is not included in this file
176
+ 2. **No CDR/Framework Annotations:** The CSV contains full VH sequences without explicit CDR boundaries (use ANARCI for annotation)
177
+ 3. **Small Size:** 914 sequences is relatively small for deep learning applications
178
+
179
+ ## Additional Information
180
+
181
+ ### Dataset Curators
182
+
183
+ - **Original Dataset:** Christopher T. Boughter, Erin J. Adams (University of Chicago)
184
+ - **Preprocessing Methodology:** Laila I. Sakhnini, Daniele Granata et al. (Novo Nordisk)
185
+ - **This Preprocessing:** CLARITY-DIGITAL-TWIN project (Hugging Science)
186
+
187
+ ### Licensing Information
188
+
189
+ Boughter et al. (2020) is published under **CC-BY-4.0** (per the DOI landing page). The raw source files in this repository were copied from `ctboughter/AIMS_manuscripts` (repository license: MIT). This Hugging Face export is distributed under the **MIT license**; please retain upstream attribution/citations (paper + repository).
190
+
191
+ ### Citation Information
192
+
193
+ **If you use this dataset, please cite the original paper, the Novo Nordisk methodology paper, and ANARCI (used for IMGT numbering):**
194
+
195
+ ```bibtex
196
+ @article{boughter2020biochemical,
197
+ title={Biochemical patterns of antibody polyreactivity revealed through a bioinformatics-based analysis of CDR loops},
198
+ author={Boughter, Christopher T and Borowska, Marta T and Guthmiller, Jenna J and Bendelac, Albert and Wilson, Patrick C and Roux, Beno{\^\i}t and Adams, Erin J},
199
+ journal={eLife},
200
+ volume={9},
201
+ pages={e61393},
202
+ year={2020},
203
+ publisher={eLife Sciences Publications Limited},
204
+ doi={10.7554/eLife.61393}
205
+ }
206
+
207
+ @article{sakhnini2025prediction,
208
+ title={Prediction of Antibody Non-Specificity using Protein Language Models and Biophysical Parameters},
209
+ author={Sakhnini, Laila I. and Beltrame, Ludovica and Fulle, Simone and Sormanni, Pietro and Henriksen, Anette and Lorenzen, Nikolai and Vendruscolo, Michele and Granata, Daniele},
210
+ journal={bioRxiv},
211
+ year={2025},
212
+ publisher={Cold Spring Harbor Laboratory},
213
+ doi={10.1101/2025.04.28.650927}
214
+ }
215
+
216
+ @article{dunbar2016anarci,
217
+ title={ANARCI: antigen receptor numbering and receptor classification},
218
+ author={Dunbar, James and Deane, Charlotte M},
219
+ journal={Bioinformatics},
220
+ volume={32},
221
+ number={2},
222
+ pages={298--300},
223
+ year={2016},
224
+ doi={10.1093/bioinformatics/btv552}
225
+ }
226
+ ```
227
+
228
+ ### Contributions
229
+
230
+ Thanks to the Boughter lab for making the original data publicly available, and to Novo Nordisk for publishing their preprocessing methodology, enabling independent replication.
231
+
232
+ ---
233
+
234
+ **Version:** 1.0.0
235
+ **Last Updated:** 2025-12-14
236
+ **Maintainer:** Hugging Science Organization