Datasets:
File size: 12,913 Bytes
052e9d6 86f6819 052e9d6 86f6819 052e9d6 86f6819 052e9d6 86f6819 052e9d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
---
license: mit
task_categories:
- text-classification
tags:
- biology
- proteins
- antibody
- nanobody
- VHH
- immunology
- polyreactivity
- non-specificity
- PSR
- FACS
- deep-sequencing
- protein-language-model
- esm
- novo-nordisk
pretty_name: Harvey Nanobody Polyreactivity Dataset (Novo Nordisk Preprocessing)
size_categories:
- 100K<n<1M
dataset_info:
features:
- name: id
dtype: string
- name: sequence
dtype: string
- name: label
dtype: int64
- name: source
dtype: string
- name: sequence_length
dtype: int64
splits:
- name: test
num_examples: 141021
config_name: default
---
# Harvey Nanobody Polyreactivity Dataset (Novo Nordisk Preprocessing)
## Dataset Description
- **Homepage:** [Hugging Science Organization](https://huggingface.co/hugging-science)
- **Repository (this implementation):** [The-Obstacle-Is-The-Way/antibody_training_pipeline_ESM](https://github.com/The-Obstacle-Is-The-Way/antibody_training_pipeline_ESM)
- **Upstream:** [ludocomito/antibody_training_pipeline_ESM](https://github.com/ludocomito/antibody_training_pipeline_ESM)
- **Paper (Original Dataset):** [Harvey et al. 2022, Nature Communications](https://doi.org/10.1038/s41467-022-35276-4)
- **Paper (Preprocessing Methodology):** [Sakhnini et al. 2025, bioRxiv](https://doi.org/10.1101/2025.04.28.650927)
- **Original Data Source:** [debbiemarkslab/nanobody-polyreactivity](https://github.com/debbiemarkslab/nanobody-polyreactivity)
- **Point of Contact:** [Hugging Science](https://huggingface.co/hugging-science)
### Dataset Summary
This dataset contains **141,021 nanobody (VHH) sequences** with binary polyreactivity labels, preprocessed according to the methodology described in **Sakhnini et al. 2025** (Novo Nordisk & University of Cambridge). The dataset was originally published by **Harvey et al. 2022** and contains synthetic nanobodies assessed by PSR (Poly-Specificity Reagent) assay via FACS sorting and deep sequencing.
**This is the preprocessed version used as a test set for evaluating the ESM-1v + Logistic Regression model trained on the Boughter dataset.**
### Key Features
- **Organism:** Synthetic camelid (nanobody) library (yeast display)
- **Molecule Type:** Nanobody / Single-domain antibody (VHH)
- **Assay:** PSR (Poly-Specificity Reagent) from Sf9 insect cell membranes
- **Method:** FACS sorting + Deep sequencing
- **Labels:** Binary classification (0 = low polyreactivity, 1 = high polyreactivity)
- **Annotation:** ANARCI with IMGT numbering scheme
- **Balance:** Well-balanced (49.1% low, 50.9% high polyreactivity)
- **Scale:** Large-scale dataset (141K sequences)
### Supported Tasks and Leaderboards
- **Binary Classification:** Predicting nanobody polyreactivity from sequence
- **Cross-Domain Validation:** Testing conventional antibody-trained models on nanobodies
- **Benchmark:** Sakhnini et al. 2025 Fig. S14E (61.7% accuracy)
### Languages
Protein sequences (amino acid alphabet)
## Dataset Structure
### Data Instances
```json
{
"id": "harvey_000001",
"sequence": "QVQLVESGGGLVQAGGSLRLSCAASGFTFVYYVMGWYRQAPGKERELVAAINAGGGSTYYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCNARVRVRWSSYYYWGQGTQVTVSS",
"label": 1,
"source": "harvey2022",
"sequence_length": 120
}
```
### Data Fields
| Field | Type | Description |
|-------|------|-------------|
| `id` | string | Unique identifier (harvey_XXXXXX format) |
| `sequence` | string | Nanobody VHH amino acid sequence (gap-free; ANARCI/IMGT-validated) |
| `label` | int | Binary label: 0 = low polyreactivity, 1 = high polyreactivity |
| `source` | string | Data source identifier (harvey2022) |
| `sequence_length` | int | Length of the VHH sequence in amino acids |
### Data Splits
| Split | Examples | Label 0 (Low) | Label 1 (High) |
|-------|----------|---------------|----------------|
| test | 141,021 | 69,262 (49.1%) | 71,759 (50.9%) |
**Note:** This dataset is used exclusively as a test set for models trained on the Boughter dataset. The entire dataset is the "test" split.
## Dataset Creation
### Curation Rationale
This dataset was created to evaluate whether models trained on conventional antibody polyreactivity data (Boughter - ELISA) can generalize to:
1. **Different molecule types:** Nanobodies (VHH) vs conventional antibodies (VH)
2. **Different assays:** PSR assay vs ELISA assay
### Source Data
#### Original Data Collection
From Harvey et al. 2022:
- Started with >2 × 10⁹ synthetic yeast display nanobody library
- MACS enrichment for polyreactive clones
- FACS sorting with PSR (polyspecificity reagent from Sf9 insect cell membranes)
- Deep sequencing of high and low polyreactivity pools
**Original Files (from debbiemarkslab/nanobody-polyreactivity):**
- `high_polyreactivity_high_throughput.csv`: 71,772 sequences
- `low_polyreactivity_high_throughput.csv`: 69,702 sequences
- **Total:** 141,474 sequences
#### Preprocessing Pipeline (Novo Nordisk Methodology)
**IMPORTANT:** Sakhnini et al. (2025) describe using the **unfiltered** Harvey dataset (>140,000 nanobodies), not the CDR-length-filtered subset (~134K) used in Harvey et al.'s published one-hot predictor. This export starts from the full official repository release (141,474 sequences).
| Stage | Description | Sequences |
|-------|-------------|-----------|
| 1. Raw Data | Combine high and low polyreactivity CSVs | 141,474 |
| 2. ANARCI Annotation | Annotate using ANARCI with IMGT numbering | 141,474 → 141,021 (99.68%) |
| 3. Gap Removal | Use `sequence_aa` not `sequence_alignment_aa` | (no change) |
**ANARCI Failures:** 453 sequences (0.32%) failed annotation and were excluded.
#### CDR Length Filtering
Harvey et al.'s published predictor uses a CDR length filter:
- CDR1==8, CDR2==8 or 9, CDR3==6-22 → 134,302 sequences
Sakhnini et al. (2025) describe using ">140 000 naïve nanobodies" and do not mention applying this filter. Accordingly, this export does not apply it:
- No CDR-length filter → 141,474 raw sequences → 141,021 after ANARCI
Evidence: Sakhnini et al. (2025) Section 4.1 ("Data sources") describes the Harvey dataset as ">140 000 naïve nanobodies", consistent with using the unfiltered data.
### Novo Nordisk Methodology Verification
This dataset's preprocessing was cross-referenced against Sakhnini et al. (2025) Section 4.1:
| Metric | Novo Paper (Section 4.1) | This Dataset | Status |
|--------|--------------------------|--------------|--------|
| Dataset Size | ">140,000 naïve nanobodies" | 141,021 sequences | ✅ MATCH |
| Annotation Method | "ANARCI following the IMGT numbering scheme" | ANARCI/IMGT | ✅ MATCH |
| Source | Harvey et al. 2022 | debbiemarkslab/nanobody-polyreactivity | ✅ MATCH |
| ANARCI Failures | Not explicitly stated | 453 (0.32%) | Documented |
**Verification Notes:**
- The paper states ">140,000" which is consistent with our 141,021 post-ANARCI count
- Labels are directly from the original Harvey et al. 2022 FACS sorting (high/low PSR pools)
- No additional filtering was applied beyond ANARCI annotation
- Note: Sakhnini et al. Fig. S14E confusion matrix totals 141,559 nanobodies, suggesting their preprocessing snapshot may differ slightly from the official upstream data used here (141,474 raw → 141,021 ANARCI-validated)
### Annotations
#### Annotation Process
1. **ANARCI Annotation:** IMGT numbering scheme applied to identify VHH domain boundaries
2. **Gap Character Handling:** Use `sequence_aa` (gap-free) instead of `sequence_alignment_aa`
3. **Label Assignment:** Binary labels from original FACS sorting (high vs low PSR pools)
#### Who are the annotators?
- **Original FACS/Sequencing:** Harvey et al. 2022 (Debbie Marks Lab, Harvard)
- **Preprocessing pipeline:** Based on Sakhnini et al. 2025 (Novo Nordisk & University of Cambridge)
- **This preprocessing:** [The-Obstacle-Is-The-Way](https://github.com/The-Obstacle-Is-The-Way) (Hugging Science)
### Personal and Sensitive Information
This dataset contains synthetic nanobody sequences from a yeast display library. No human sequences or personal information is included.
## Considerations for Using the Data
### Social Impact of Dataset
This dataset enables:
- Development of polyreactivity prediction tools for nanobodies
- Cross-domain validation of antibody developability models
- In-silico screening to reduce experimental burden
### Discussion of Biases
1. **Synthetic Library Bias:** All sequences are from a synthetic yeast display library, not natural immune repertoires
2. **Assay Bias:** PSR assay may capture different aspects of non-specificity than ELISA
3. **Selection Pressure:** FACS sorting may introduce biases based on expression level
4. **Nanobody-Specific:** Results may not generalize to conventional antibodies
### Other Known Limitations
1. **VHH Only:** This dataset contains single-domain antibodies (no light chain)
2. **Binary Labels:** Quantitative PSR scores are not included (only binary high/low)
3. **Cross-Assay Transfer:** Models trained on ELISA data (Boughter) may not optimally transfer to PSR data
### Recommended Usage
When evaluating models trained on ELISA data (Boughter):
```python
# For reproducing Sakhnini et al. (2025) Fig. S14E, binarize model probabilities with:
THRESHOLD = 0.5495 # decision threshold on predicted P(non-specific)
predictions = (model_probabilities >= THRESHOLD).astype(int)
```
### Note on Inference Threshold (0.5495)
**IMPORTANT:** The 0.5495 threshold is for **model inference/evaluation only**, NOT preprocessing.
- **What it is:** A decision threshold for binarizing model prediction probabilities during evaluation
- **What it is NOT:** A preprocessing parameter - the data (sequences, labels) is unaffected
- **Why it exists:** Empirically determined to better reproduce Sakhnini et al. (2025) Fig. S14E results when evaluating ELISA-trained models on PSR test data
- **Not in the paper:** This threshold value is not described in Sakhnini et al. (2025); it is derived via threshold sweep in this repository for parity against reported results
- **Standard threshold:** 0.5 (binary classification default)
- **PSR-calibrated threshold:** 0.5495 (determined via threshold sweep to match Novo's reported accuracy)
This threshold adjustment compensates for the cross-assay domain shift between ELISA (training) and PSR (testing) data.
## Additional Information
### Dataset Curators
- **Original Dataset:** Emily P. Harvey, Debbie Marks Lab (Harvard Medical School)
- **Preprocessing Methodology:** Laila I. Sakhnini, Daniele Granata et al. (Novo Nordisk)
- **This Preprocessing:** [The-Obstacle-Is-The-Way](https://github.com/The-Obstacle-Is-The-Way) (Hugging Science)
### Licensing Information
Harvey et al. (2022) is published under **CC-BY-4.0** (per the DOI landing page). The raw source files in this repository were copied from `debbiemarkslab/nanobody-polyreactivity` (repository license: MIT). This Hugging Face export is distributed under the **MIT license**; please retain upstream attribution/citations (paper + repository).
### Citation Information
**If you use this dataset, please cite the original paper, the Novo Nordisk methodology paper, and ANARCI (used for IMGT numbering):**
```bibtex
@article{harvey2022in_silico,
title={An in silico method to assess antibody fragment polyreactivity},
author={Harvey, Edward P. and Shin, Jung-Eun and Skiba, Meredith A. and Nemeth, Genevieve R. and Hurley, Joseph D. and Wellner, Alon and Shaw, Ada Y. and Miranda, Victor G. and Min, Joseph K. and Liu, Chang C. and Marks, Debora S. and Kruse, Andrew C.},
journal={Nature Communications},
volume={13},
number={1},
pages={7554},
year={2022},
publisher={Springer Science and Business Media LLC},
doi={10.1038/s41467-022-35276-4}
}
@article{sakhnini2025prediction,
title={Prediction of Antibody Non-Specificity using Protein Language Models and Biophysical Parameters},
author={Sakhnini, Laila I. and Beltrame, Ludovica and Fulle, Simone and Sormanni, Pietro and Henriksen, Anette and Lorenzen, Nikolai and Vendruscolo, Michele and Granata, Daniele},
journal={bioRxiv},
year={2025},
month={May},
publisher={Cold Spring Harbor Laboratory},
doi={10.1101/2025.04.28.650927},
url={https://www.biorxiv.org/content/10.1101/2025.04.28.650927v1}
}
@article{dunbar2016anarci,
title={ANARCI: antigen receptor numbering and receptor classification},
author={Dunbar, James and Deane, Charlotte M},
journal={Bioinformatics},
volume={32},
number={2},
pages={298--300},
year={2016},
doi={10.1093/bioinformatics/btv552}
}
```
### Contributions
Thanks to the Harvey lab and Debbie Marks lab for making the original data publicly available, and to Novo Nordisk for publishing their preprocessing methodology.
---
**Version:** 1.0.0
**Last Updated:** 2025-12-14
**Maintainer:** Hugging Science Organization
|