Ahnj-Stability commited on
Commit
02afdc0
ยท
1 Parent(s): dd99b7d

Add : README english ver

Browse files
Files changed (2) hide show
  1. README.md +7 -7
  2. README_en.md +149 -0
README.md CHANGED
@@ -19,12 +19,12 @@ tags:
19
 
20
  **"ํ•œ๊ตญ ์—์ด์ „ํŠธ ๋ฒค์น˜๋งˆํฌ ํ”„๋กœ์ ํŠธ"**
21
 
22
- AI ์—์ด์ „ํŠธ์˜ ๋Šฅ๋ ฅ์ด ๊ณ ๋„ํ™”๋˜๋ฉด์„œ, ๊ทธ ์„ฑ๋Šฅ์„ ์‹ค์ œ ํ™˜๊ฒฝ๊ณผ ์œ ์‚ฌํ•œ ์กฐ๊ฑด์—์„œ ์ •๋ฐ€ํ•˜๊ฒŒ ์ธก์ •ํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•ด์กŒ์Šต๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ ๋Œ€๋ถ€๋ถ„์˜ ๋ฒค์น˜๋งˆ
23
- ํฌ๋Š” ์˜์–ด๊ถŒ ํ™˜๊ฒฝ์„ ๊ธฐ์ค€์œผ๋กœ ์„ค๊ณ„๋˜์–ด
24
- , ํ•œ๊ตญ์˜ ํŠน์ˆ˜ํ•œ ์‚ฌ์šฉ ๋งฅ๋ฝ์„ ๋ฐ˜์˜ํ•˜๋Š” ๋ฐ ํ•œ๊ณ„๊ฐ€ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
25
  ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด, ํ•œ๊ตญ ์‹ค์‚ฌ์šฉ ํ™˜๊ฒฝ์— ํŠนํ™”๋œ ๊ณ ํ’ˆ์งˆ ์—์ด์ „ํŠธ ๋ฒค์น˜๋งˆํฌ๋ฅผ ๊ฐœ๋ฐœํ•˜์˜€์Šต๋‹ˆ๋‹ค.
26
 
27
- ## Key Features
28
  **1. ๋‹จ๊ณ„๋ณ„ ํƒœ์Šคํฌ ์„ค๊ณ„**
29
  ๋‹จ์ˆœ ๋„๊ตฌ ํ˜ธ์ถœ๋ถ€ํ„ฐ ์žฅ๊ธฐ์  ๋งฅ๋ฝ ๋Šฅ๋ ฅ, ๊ฐ•๊ฑด์„ฑ ์ฒ˜๋ฆฌ ๋Šฅ๋ ฅ๊นŒ์ง€ ์—์ด์ „ํŠธ์˜ ๋Šฅ๋ ฅ์„ 7๋‹จ๊ณ„๋กœ ์ž…์ฒด์ ์œผ๋กœ ๋ถ„์„ํ•˜์˜€์Šต๋‹ˆ๋‹ค.
30
 
@@ -52,12 +52,12 @@ dataset = load_dataset("Hugging-Face-KREW/Ko-AgentBench", data_files="L1.json")
52
  dataset = load_dataset("Hugging-Face-KREW/Ko-AgentBench", data_files="*.json")
53
  ```
54
 
55
- # Overview
56
 
57
  - ์—์ด์ „ํŠธ ๋ฒค์น˜๋งˆํฌ ์„ค๊ณ„๋ฅผ ์œ„ํ•œ ํƒœ์Šคํฌ ๋ถ„๋ฅ˜ ์ฒด๊ณ„ ์ •์˜
58
  - ์—์ด์ „ํŠธ์˜ Tool calling ํ™œ์šฉํ•˜๋Š” ๊ณผ์ •์—์„œ ํ•„์š”ํ•œ ๋Šฅ๋ ฅ์„ ๋‹จ๊ณ„์ ์œผ๋กœ ๋ถ„๋ฆฌํ•˜์—ฌ ํ‰๊ฐ€ํ•  ์ˆ˜ ์žˆ๋„๋ก ์„ค๊ณ„
59
 
60
- ### ๋ฒ”์œ„
61
 
62
  - ํ‰๊ฐ€ ๋Œ€์ƒ : Open-weight sLLM(*supports tool calling), Commercial APIs
63
  - ํ‰๊ฐ€ ๋ฒ”์œ„ : ํ‰๊ฐ€ ์˜์—ญ : ๋‹จ์ผํ„ด(single-turn) ๋ฐ ๋ฉ€ํ‹ฐํ„ด(multi-turn) ๋Œ€ํ™” ์ƒํ™ฉ์—์„œ Agent๋กœ์จ Tool calling ์ˆ˜ํ–‰ ๋Šฅ๋ ฅ
@@ -134,7 +134,7 @@ dataset = load_dataset("Hugging-Face-KREW/Ko-AgentBench", data_files="*.json")
134
 
135
 
136
 
137
- ### Links
138
  Ko-AgentBench์— ๋Œ€ํ•œ ๋” ์ž์„ธํ•œ ๋‚ด์šฉ์„ ํ™•์ธ ํ•˜์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
139
  - ๐Ÿ† [Live Leaderboard](https://huggingface.co/spaces/huggingface-KREW/Ko-AgentBench)
140
  - ๐Ÿ“Š [Dataset](https://huggingface.co/datasets/huggingface-KREW/Ko-AgentBench)
 
19
 
20
  **"ํ•œ๊ตญ ์—์ด์ „ํŠธ ๋ฒค์น˜๋งˆํฌ ํ”„๋กœ์ ํŠธ"**
21
 
22
+ **[English](README_en.md) | ํ•œ๊ตญ์–ด**
23
+
24
+ AI ์—์ด์ „ํŠธ์˜ ๋Šฅ๋ ฅ์ด ๊ณ ๋„ํ™”๋˜๋ฉด์„œ, ๊ทธ ์„ฑ๋Šฅ์„ ์‹ค์ œ ํ™˜๊ฒฝ๊ณผ ์œ ์‚ฌํ•œ ์กฐ๊ฑด์—์„œ ์ •๋ฐ€ํ•˜๊ฒŒ ์ธก์ •ํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•ด์กŒ์Šต๋‹ˆ๋‹ค. ํ•˜์ง€๋งŒ ๋Œ€๋ถ€๋ถ„์˜ ๋ฒค์น˜๋งˆํฌ๋Š” ์˜์–ด๊ถŒ ํ™˜๊ฒฝ์„ ๊ธฐ์ค€์œผ๋กœ ์„ค๊ณ„๋˜์–ด, ํ•œ๊ตญ์˜ ํŠน์ˆ˜ํ•œ ์‚ฌ์šฉ ๋งฅ๋ฝ์„ ๋ฐ˜์˜ํ•˜๋Š” ๋ฐ ํ•œ๊ณ„๊ฐ€ ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค.
25
  ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด, ํ•œ๊ตญ ์‹ค์‚ฌ์šฉ ํ™˜๊ฒฝ์— ํŠนํ™”๋œ ๊ณ ํ’ˆ์งˆ ์—์ด์ „ํŠธ ๋ฒค์น˜๋งˆํฌ๋ฅผ ๊ฐœ๋ฐœํ•˜์˜€์Šต๋‹ˆ๋‹ค.
26
 
27
+ # Key Features โœจ
28
  **1. ๋‹จ๊ณ„๋ณ„ ํƒœ์Šคํฌ ์„ค๊ณ„**
29
  ๋‹จ์ˆœ ๋„๊ตฌ ํ˜ธ์ถœ๋ถ€ํ„ฐ ์žฅ๊ธฐ์  ๋งฅ๋ฝ ๋Šฅ๋ ฅ, ๊ฐ•๊ฑด์„ฑ ์ฒ˜๋ฆฌ ๋Šฅ๋ ฅ๊นŒ์ง€ ์—์ด์ „ํŠธ์˜ ๋Šฅ๋ ฅ์„ 7๋‹จ๊ณ„๋กœ ์ž…์ฒด์ ์œผ๋กœ ๋ถ„์„ํ•˜์˜€์Šต๋‹ˆ๋‹ค.
30
 
 
52
  dataset = load_dataset("Hugging-Face-KREW/Ko-AgentBench", data_files="*.json")
53
  ```
54
 
55
+ # Overview
56
 
57
  - ์—์ด์ „ํŠธ ๋ฒค์น˜๋งˆํฌ ์„ค๊ณ„๋ฅผ ์œ„ํ•œ ํƒœ์Šคํฌ ๋ถ„๋ฅ˜ ์ฒด๊ณ„ ์ •์˜
58
  - ์—์ด์ „ํŠธ์˜ Tool calling ํ™œ์šฉํ•˜๋Š” ๊ณผ์ •์—์„œ ํ•„์š”ํ•œ ๋Šฅ๋ ฅ์„ ๋‹จ๊ณ„์ ์œผ๋กœ ๋ถ„๋ฆฌํ•˜์—ฌ ํ‰๊ฐ€ํ•  ์ˆ˜ ์žˆ๋„๋ก ์„ค๊ณ„
59
 
60
+ ## ๋ฒ”์œ„
61
 
62
  - ํ‰๊ฐ€ ๋Œ€์ƒ : Open-weight sLLM(*supports tool calling), Commercial APIs
63
  - ํ‰๊ฐ€ ๋ฒ”์œ„ : ํ‰๊ฐ€ ์˜์—ญ : ๋‹จ์ผํ„ด(single-turn) ๋ฐ ๋ฉ€ํ‹ฐํ„ด(multi-turn) ๋Œ€ํ™” ์ƒํ™ฉ์—์„œ Agent๋กœ์จ Tool calling ์ˆ˜ํ–‰ ๋Šฅ๋ ฅ
 
134
 
135
 
136
 
137
+ ## Links
138
  Ko-AgentBench์— ๋Œ€ํ•œ ๋” ์ž์„ธํ•œ ๋‚ด์šฉ์„ ํ™•์ธ ํ•˜์‹ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
139
  - ๐Ÿ† [Live Leaderboard](https://huggingface.co/spaces/huggingface-KREW/Ko-AgentBench)
140
  - ๐Ÿ“Š [Dataset](https://huggingface.co/datasets/huggingface-KREW/Ko-AgentBench)
README_en.md ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ task_categories:
6
+ - question-answering
7
+ tags:
8
+ - agent
9
+ - benchmark
10
+ - tool-use
11
+ - korean
12
+ ---
13
+
14
+ <p align="center">
15
+ <img src="banner.png" />
16
+ </p>
17
+
18
+ # **๐Ÿ‡ฐ๐Ÿ‡ท Ko-AgentBench v1**
19
+
20
+ **"Korean Agent Benchmark Project"**
21
+
22
+ **English | [ํ•œ๊ตญ์–ด](README.md)**
23
+
24
+ As AI agents become more sophisticated, it has become crucial to precisely measure their performance under conditions similar to real-world environments. However, most benchmarks are designed based on English-speaking environments, which limits their ability to reflect Korea's unique usage contexts.
25
+
26
+ To address this issue, we have developed a high-quality agent benchmark specialized for the Korean real-world usage environment.
27
+
28
+ # Key Features โœจ
29
+ **1. Step-by-step Task Design**
30
+ We have comprehensively analyzed agent capabilities across 7 levels, from simple tool calls to long-term contextual abilities and robustness handling capabilities.
31
+
32
+ **2. 18 Korean-specific APIs and High-quality Scenarios Tailored to Real-life Environments**
33
+ Based on APIs from Korean real-world usage environments such as Naver, Maps, Kakao, and websites, we have implemented realistic problem-solving scenarios closely related to domestic users' daily lives, such as 'appointment booking' and 'blog review search'.
34
+
35
+ **3. Cache-based Iterative Evaluation and Robustness Testing**
36
+ We solve chronic problems of existing benchmarks, such as 'information attribute inconsistency changes'.
37
+ By improving failed API responses, we ensure benchmark consistency and reliability.
38
+
39
+ By evaluating error recognition/response capabilities (strategies) in intentional error situations, we select models that operate stably even in real-world environments.
40
+
41
+ **4. Step-specific Precision Metrics**
42
+ We evaluate the necessity/requirements of problem-solving step by step, including tool selection, parameter configuration, and data flow. Through this, we quantitatively identify the strengths and weaknesses of models.
43
+
44
+ ## **Data Loading**
45
+
46
+ ```bash
47
+ from datasets import load_dataset
48
+
49
+ # Load specific level
50
+ dataset = load_dataset("Hugging-Face-KREW/Ko-AgentBench", data_files="L1.json")
51
+
52
+ # Or load all levels
53
+ dataset = load_dataset("Hugging-Face-KREW/Ko-AgentBench", data_files="*.json")
54
+ ```
55
+
56
+ # Overview
57
+
58
+ - Define task classification system for agent benchmark design
59
+ - Design to evaluate agent's tool calling capabilities in a step-by-step manner
60
+
61
+ ## Scope
62
+
63
+ - Evaluation Target: Open-weight sLLM (supports tool calling), Commercial APIs
64
+ - Evaluation Scope: Agent tool calling performance in single-turn and multi-turn conversation situations
65
+ - Applied APIs: 18 Korean-specific open APIs
66
+
67
+
68
+ # Task Levels
69
+
70
+ ## Single-Turn
71
+
72
+ **L1. Single Tool Call**
73
+ - Goal: Verify the most basic API calling capability
74
+ - Description: Check if the given tool can be executed with correct parameters
75
+ - Feature: Evaluate "accuracy only" by performing requests with specified API names or natural language requests as-is
76
+ - Example: "Search for 'Rapid Current' using Naver Book API and tell me the price."
77
+ - Example: "Tell me the price of the 'Rapid Current' book"
78
+
79
+ **L2. Tool Selection**
80
+ - Goal: Verify the ability to select the optimal API among multiple candidate tools
81
+ - Description: Users make requests in natural language, and the model must select the most suitable tool from the given tool list
82
+ - Feature: Evaluate accurate tool mapping with input natural language
83
+ - Example: "Check the price of the 'All Back English Middle 2-1 Cheonjae (Kim)' book."
84
+ - Candidate tools: `hotel_booking_api`, `aladin_books_api`
85
+ - Candidate tools must have no mutual correlation.
86
+
87
+ **L3. Sequential Tool Reasoning**
88
+ - Goal: Verify planning and execution capabilities through multi-step reasoning
89
+ - Description: Check if a correct pipeline can be constructed by connecting the results of one tool as input to another tool
90
+ - Feature: Evaluate "planned chain-of-tools" rather than simple calls
91
+ - Example: "Tell me when the Instax11 I bought from 11st Amazon will be delivered"
92
+ - Candidate tools: `11st_order_api`, `customs_api`, `cj_delivery_api`
93
+ - Tools must be callable sequentially (11st delivery number inquiry โ†’ customs clearance โ†’ courier company)
94
+
95
+ **L4. Parallel Tool Reasoning**
96
+ - Goal: Collect information in parallel and derive conclusions by synthesizing it
97
+ - Description: Simultaneously call multiple independent tools, compare and analyze results, then produce final answers
98
+ - Feature: Evaluate multi-source aggregation (information synthesis and comparison ability)
99
+ - Example: "Check the stock of the 'Hanroro Grapefruit Apricot Club' book."
100
+ - Candidate tools: `kyobo_books_api`, `aladin_books_api`
101
+ - Expected answer: There are 12 books at Kyobo Book Centre and 18 books at Aladin, totaling 30 books.
102
+ - At this time, candidate tools must handle the same function in parallel.
103
+
104
+ **L5. Error Handling and Robustness**
105
+ - Goal: Verify coping ability in error situations
106
+ - Description: Evaluate how various failure modes are handled, not just "failed"
107
+ - **Sub-items:**
108
+ - A. Request for additional questions
109
+ - Guide users to make clearer requests when information is insufficient
110
+ - B. Hallucination prevention
111
+ - Prohibit calling non-existent APIs
112
+ - Prohibit "pretending to succeed" answers when failed
113
+ - C. Fallback maneuvers
114
+ - Whether alternative APIs with the same function can be utilized when specific API errors occur
115
+ - Example: "When Naver Movie API call fails โ†’ Report 'API call failed' or call Kakao Movie API as alternative"
116
+
117
+ ## Multi-Turn
118
+
119
+ **L6. Efficient Tool Utilization**
120
+ - Goal: Verify the ability to efficiently reuse previous tool results
121
+ - Description: While recalling APIs in all situations is accurate, it's inefficient in terms of cost and delay. Conversely, unconditionally reusing old information also causes accuracy problems.
122
+ - Feature: Evaluate whether reasonable choices can be made between "recall vs reuse"
123
+ - Example:
124
+ - User: "Compare Coupang and Naver prices." โ†’ Result: Coupang 80, Naver 85
125
+ - User: "What was the Naver price?"
126
+ - Correct answer: 85 (utilize past information, avoid unnecessary recalls)
127
+ - Wrong answer: Call API again or "I don't know"
128
+
129
+ **L7. Long-Context Reasoning**
130
+ - Goal: Verify the ability to maintain long-term context in multi-turn conversations
131
+ - Description: Remember information from several turns ago and correctly perform tool calling by connecting it with new questions
132
+ - Example:
133
+ - User's first question: "I'm going to travel to Jeju Island."
134
+ - Later: "How's the weather?" โ†’ Call weather API using Jeju Island context
135
+ - (Additional turn) "If it rains, find places where I can buy an umbrella." โ†’ Utilize all previous Jeju Island + weather context
136
+
137
+ ## Links
138
+ You can check more detailed information about Ko-AgentBench.
139
+ - ๐Ÿ† [Live Leaderboard](https://huggingface.co/spaces/huggingface-KREW/Ko-AgentBench)
140
+ - ๐Ÿ“Š [Dataset](https://huggingface.co/datasets/huggingface-KREW/Ko-AgentBench)
141
+ - ๐Ÿ“ [Github](https://github.com/Hugging-Face-KREW/Ko-AgentBench)
142
+
143
+ ## Contact
144
+ If you have any questions about the dataset and benchmark, please contact us!
145
+
146
+ Hugging Face KREW is a Korean non-profit research organization that strives to deeply understand artificial intelligence through Hugging Face and contribute to open source.
147
+ - โœ๐Ÿป Blog: [KREW-blog](https://hugging-face-krew.github.io/)
148
+ - ๐Ÿฆ HuggingFace Community: [@huggingface-KREW](https://huggingface.co/huggingface-KREW)
149
+ - ๐Ÿ’ผ LinkedIn: [Hugging Face KREW](https://www.linkedin.com/company/hugging-face-krew/)