meaw0415 commited on
Commit
4e595d8
·
verified ·
1 Parent(s): 4274038
NMRGym_both_test.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a999773f00c4cf5688900bc8edd4dc490a83a6f9209d3041d2f5eb682bb6f86f
3
+ size 172546408
NMRGym_both_train.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:627e133032a30e8b03e35f53d560b9a8cb41700371b288802034e3069bd6d59a
3
+ size 1348822022
NMRGym_test_balanced.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:996cb692e86c86de5ac3735274500298b3e80d3e1f57868478270fe472301a6b
3
+ size 207945355
NMRGym_train_balanced.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5cd4fdb6f8a54b1b49c27b94f2c32e449e6499fe247ada04651b5ca85716ed54
3
+ size 1041901432
NMRGym_val_balanced.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:deb0c5d1e27527986ef994ac53f75528ddf2dce2874bbbe75012729fbf0976f0
3
+ size 138866740
README.md ADDED
@@ -0,0 +1,237 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ task_categories:
4
+ - text-to-text
5
+ - tabular-regression
6
+ - tabular-classification
7
+ pretty_name: NMRGym
8
+ language:
9
+ - en
10
+ tags:
11
+ - chemistry
12
+ - nmr
13
+ - spectroscopy
14
+ - molecular-property-prediction
15
+ - drug-discovery
16
+ - cheminformatics
17
+ size_categories:
18
+ - 100K<n<1M
19
+ ---
20
+
21
+ # ‼️ Important ‼️
22
+ "If you need access to the dataset, please email [zhengf723@connect.hkust-gz.edu.cn](mailto:zhengf723@connect.hkust-gz.edu.cn)"
23
+
24
+ # NMRGym
25
+ Benchmark on NMR Spectrum.
26
+
27
+ ## Data Sources (Before Cleaning)
28
+
29
+ | Source | Records | Unique SMILES | Total Spectrums | ¹H NMR | ¹³C NMR |
30
+ | :------------------ | ----------: | ------------: | --------------: | ----------: | ----------: |
31
+ | **CH-NP** | 12,165 | 12,165 | 24,326 | 12,161 | 12,165 |
32
+ | **HMDB** | 1,791 | 896 | 3,278 | 1,566 | 1,712 |
33
+ | **NMRBank** | 148,914 | 142,964 | 297,043 | 148,437 | 148,606 |
34
+ | **NMRShiftDB 2024** | 41,019 | 39,631 | 50,416 | 18,570 | 31,846 |
35
+ | **NP-MRD** | 489,569 | 243,598 | 950,242 | 462,233 | 488,009 |
36
+ | **PubChem-NMR** | 1,647 | 1,535 | 2,605 | 1,556 | 1,049 |
37
+ | **SDBS** | 12,926 | 12,626 | 22,711 | 11,522 | 11,189 |
38
+ | **Total** | **708,031** | **430,690** | **1,350,621** | **656,045** | **694,576** |
39
+
40
+ ---
41
+
42
+ ## Balanced Dataset Statistics (After Cleaning & Processing)
43
+
44
+ After data cleaning, filtering, quality control, and balanced scaffold splitting, the final NMRGym dataset consists of three splits:
45
+
46
+ | Split | Records | Unique SMILES | ¹H NMR | ¹³C NMR |
47
+ | :------- | ----------: | ------------: | ----------: | ----------: |
48
+ | **Train** | 402,676 | 250,822 | 402,676 | 402,676 |
49
+ | **Val** | 53,672 | 50,716 | 53,672 | 53,672 |
50
+ | **Test** | 80,069 | 74,568 | 80,069 | 80,069 |
51
+ | **Total** | **536,417** | **376,106** | **536,417** | **536,417** |
52
+
53
+ ### Dataset Visualizations
54
+
55
+ <!-- ![Dataset Overview](dataset_overview.png)
56
+ *Figure 1: Overview of dataset statistics including total records, unique SMILES, data duplication, NMR spectra types, and top elements.*
57
+
58
+ ![Functional Groups Distribution](functional_groups.png)
59
+ *Figure 2: Distribution of 22 functional groups across train, validation, and test sets.*
60
+
61
+ ![Element Distribution](element_distribution.png)
62
+ *Figure 3: Distribution of common elements (C, H, O, N, F, Cl, Br, S, P, I) across datasets.* -->
63
+
64
+
65
+
66
+ ---
67
+
68
+ ### Quick Checklist
69
+
70
+ * [✅] Data cleaning: Heavy atom filtering and illegal smiles exclusion.
71
+ * [✅] Data Summary and Visualization.
72
+ * [✅] Data Split.
73
+ * [] 3D coord. generation. Rdkit.
74
+ * [✅] Toxic Property label generation.
75
+ * [✅] Function Group label generation.
76
+
77
+ ---
78
+ ## NMRGym Split Dataset Format (`nmrgym_spec_filtered_both_{train,test}.pkl`)
79
+
80
+ This dataset contains post-QC, scaffold-split molecular entries with paired NMR spectra, structure fingerprints, functional group annotations, and toxicity labels.
81
+
82
+ Each `.pkl` file is a Python list of dictionaries. Each dictionary corresponds to a single unique molecule.
83
+
84
+ ### Example record structure
85
+
86
+ ```python
87
+ {
88
+ "smiles": "CC(=O)Oc1ccccc1C(=O)O",
89
+ "h_shift": [7.25, 7.32, 2.14, 1.27],
90
+ "c_shift": [128.5, 130.1, 172.9, 20.7],
91
+ "fingerprint": np.ndarray(shape=(2048,), dtype=np.uint8),
92
+ "fg_onehot": np.ndarray(shape=(22,), dtype=np.uint8),
93
+ "toxicity": np.ndarray(shape=(7,), dtype=np.int8),
94
+ }
95
+ ```
96
+
97
+ ---
98
+
99
+ ### Field definitions
100
+
101
+ **`smiles`** (`str`)
102
+ Canonical SMILES string for this molecule.
103
+
104
+ **`h_shift`** (`list[float]`)
105
+ Experimental or curated ¹H NMR peak positions in ppm.
106
+
107
+ **`c_shift`** (`list[float]`)
108
+ Experimental or curated ¹³C NMR peak positions in ppm.
109
+
110
+ **`fingerprint`** (`np.ndarray(2048,)`, `uint8`)
111
+ RDKit Morgan fingerprint (radius = 2, 2048 bits). Encodes local circular substructures.
112
+
113
+ **`fg_onehot`** (`np.ndarray(22,)`, `uint8`)
114
+ Binary functional-group vector. `1` means the SMARTS pattern is present in the molecule.
115
+ Index mapping (0→21):
116
+
117
+ 1. Alcohol
118
+ 2. Carboxylic Acid
119
+ 3. Ester
120
+ 4. Ether
121
+ 5. Aldehyde
122
+ 6. Ketone
123
+ 7. Alkene
124
+ 8. Alkyne
125
+ 9. Benzene
126
+ 10. Primary Amine
127
+ 11. Secondary Amine
128
+ 12. Tertiary Amine
129
+ 13. Amide
130
+ 14. Cyano
131
+ 15. Fluorine
132
+ 16. Chlorine
133
+ 17. Bromine
134
+ 18. Iodine
135
+ 19. Sulfonamide
136
+ 20. Sulfone
137
+ 21. Sulfide
138
+ 22. Phosphoric Acid
139
+
140
+ **`toxicity`** (`np.ndarray(7,)`, `int8`)
141
+ Seven binary toxicity endpoints (1 = toxic / positive, 0 = negative):
142
+ 0. AMES (mutagenicity)
143
+
144
+ 1. DILI (Drug-Induced Liver Injury)
145
+ 2. Carcinogens_Lagunin (carcinogenicity)
146
+ 3. hERG (cardiotoxic channel block)
147
+ 4. ClinTox (clinical toxicity)
148
+ 5. NR-ER (endocrine / estrogen receptor)
149
+ 6. SR-ARE (oxidative stress response)
150
+
151
+ ---
152
+
153
+ ### Train / Test meaning
154
+
155
+ * `nmrgym_spec_filtered_both_train.pkl`: scaffold-based training set.
156
+ * `nmrgym_spec_filtered_both_test.pkl`: scaffold-disjoint test set.
157
+
158
+ Scaffold split is computed using Bemis–Murcko scaffolds. This means test scaffolds do not appear in train, simulating generalization to new chemotypes instead of just new stereoisomers.
159
+
160
+ ---
161
+
162
+ ### Minimal usage example
163
+
164
+ ```python
165
+ import pickle
166
+ from rdkit import Chem
167
+ from rdkit.Chem import AllChem
168
+
169
+ # load the dataset
170
+ test_path = "/gemini/user/private/NMRGym/utils/split_output/nmrgym_spec_filtered_both_test.pkl"
171
+ with open(test_path, "rb") as f:
172
+ dataset = pickle.load(f)
173
+
174
+ print("num molecules:", len(dataset))
175
+ print("keys:", dataset[0].keys())
176
+ print("example toxicity vector:", dataset[0]["toxicity"])
177
+
178
+ # build 3D conformer for the first molecule
179
+ smi = dataset[0]["smiles"]
180
+ mol = Chem.MolFromSmiles(smi)
181
+ mol = Chem.AddHs(mol) # add hydrogens for 3D
182
+ AllChem.EmbedMolecule(mol, AllChem.ETKDG())
183
+ AllChem.UFFOptimizeMolecule(mol)
184
+
185
+ # extract 3D coordinates (in Å)
186
+ conf = mol.GetConformer()
187
+ coords = []
188
+ for atom_idx in range(mol.GetNumAtoms()):
189
+ pos = conf.GetAtomPosition(atom_idx)
190
+ coords.append([pos.x, pos.y, pos.z])
191
+
192
+ print("3D coords for first molecule (Angstrom):")
193
+ for i, (x,y,z) in enumerate(coords):
194
+ sym = mol.GetAtomWithIdx(i).GetSymbol()
195
+ print(f"{i:2d} {sym:2s} {x:8.3f} {y:8.3f} {z:8.3f}")
196
+ ```
197
+
198
+ ### Notes on 3D coordinates
199
+
200
+ * We generate a single low-energy conformer using RDKit ETKDG embedding + UFF optimization.
201
+ * Coordinates are in Ångström.
202
+ * These coordinates are not guaranteed to match the experimental NMR conformer in solvent; they are intended for featurization (message passing models, geometry-aware models, etc.), not quantum-accurate geometry.
203
+
204
+ ---
205
+
206
+ ## Downstream Benchmark Tasks
207
+
208
+ This benchmark suite evaluates AI models on multiple spectroscopy-related prediction tasks. Each task reflects a distinct molecular reasoning aspect — from direct spectrum regression to property and toxicity prediction.
209
+
210
+ ### 1. Spectral Prediction
211
+
212
+ | **Method / Paper Title** | **Model Type / Approach** | **Metric(s)** | **Model Size** | **Notes** |
213
+ | ------------------------ | ------------------------- | ------------- | -------------- | --------- |
214
+ | x | x |x | x | x |
215
+
216
+ ### 2. Structure Prediction (Inverse NMR)
217
+
218
+ | **Method / Paper Title** | **Model Type / Approach** | **Metric(s)** | **Model Size** | **Notes** |
219
+ | ------------------------ | ------------------------- | ------------- | -------------- | --------- |
220
+ | x | x |x | x | x |
221
+ ### 3. Molecular Fingerprint Prediction (Spec2FP)
222
+
223
+ | **Method / Paper Title** | **Model Type / Approach** | **Metric(s)** | **Model Size** | **Notes** |
224
+ | ------------------------ | ------------------------- | ------------- | -------------- | --------- |
225
+ | x | x |x | x | x |
226
+ ### 4. Functional Group Classification (Spec2Func)
227
+
228
+ | **Method / Paper Title** | **Model Type / Approach** | **Metric(s)** | **Model Size** | **Notes** |
229
+ | ------------------------ | ------------------------- | ------------- | -------------- | --------- |
230
+ | x | x |x | x | x |
231
+ ### 5. Molecular Toxicity Prediction (Spec2Tox / ADMET)
232
+
233
+ | **Method / Paper Title** | **Model Type / Approach** | **Metric(s)** | **Model Size** | **Notes** |
234
+ | ------------------------ | ------------------------- | ------------- | -------------- | --------- |
235
+ | x | x |x | x | x |
236
+
237
+ ---
analyze_data.py ADDED
@@ -0,0 +1,368 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ """
3
+ Analyze NMRGym balanced datasets and generate visualizations
4
+ """
5
+ import pickle
6
+ import numpy as np
7
+ import matplotlib.pyplot as plt
8
+ import seaborn as sns
9
+ from collections import Counter
10
+ from rdkit import Chem
11
+ from rdkit.Chem.Scaffolds import MurckoScaffold
12
+ import json
13
+
14
+ # Set style
15
+ sns.set_style("whitegrid")
16
+ plt.rcParams['font.size'] = 10
17
+ plt.rcParams['figure.dpi'] = 300
18
+
19
+ # Functional group names (index 0-21)
20
+ FG_NAMES = [
21
+ "Alcohol", "Carboxylic Acid", "Ester", "Ether", "Aldehyde", "Ketone",
22
+ "Alkene", "Alkyne", "Benzene", "Primary Amine", "Secondary Amine",
23
+ "Tertiary Amine", "Amide", "Cyano", "Fluorine", "Chlorine",
24
+ "Bromine", "Iodine", "Sulfonamide", "Sulfone", "Sulfide", "Phosphoric Acid"
25
+ ]
26
+
27
+ def load_dataset(pkl_path):
28
+ """Load a pickle file"""
29
+ with open(pkl_path, "rb") as f:
30
+ return pickle.load(f)
31
+
32
+ def get_scaffold(smiles):
33
+ """Get Bemis-Murcko scaffold"""
34
+ try:
35
+ mol = Chem.MolFromSmiles(smiles)
36
+ if mol is None:
37
+ return None
38
+ scaffold = MurckoScaffold.GetScaffoldForMol(mol)
39
+ return Chem.MolToSmiles(scaffold)
40
+ except:
41
+ return None
42
+
43
+ def get_element_counts(smiles):
44
+ """Get element counts from SMILES"""
45
+ try:
46
+ mol = Chem.MolFromSmiles(smiles)
47
+ if mol is None:
48
+ return {}
49
+ element_counts = {}
50
+ for atom in mol.GetAtoms():
51
+ symbol = atom.GetSymbol()
52
+ element_counts[symbol] = element_counts.get(symbol, 0) + 1
53
+ return element_counts
54
+ except:
55
+ return {}
56
+
57
+ def analyze_dataset(dataset, name):
58
+ """Analyze a single dataset"""
59
+ print(f"\n{'='*60}")
60
+ print(f"Analyzing {name}")
61
+ print(f"{'='*60}")
62
+
63
+ stats = {
64
+ 'name': name,
65
+ 'total_records': len(dataset),
66
+ 'unique_smiles': len(set(d['smiles'] for d in dataset)),
67
+ 'scaffolds': [],
68
+ 'functional_groups': np.zeros(22),
69
+ 'elements': Counter(),
70
+ 'h_spectra': 0,
71
+ 'c_spectra': 0,
72
+ }
73
+
74
+ all_smiles = set()
75
+ scaffold_counter = Counter()
76
+
77
+ for record in dataset:
78
+ smiles = record['smiles']
79
+ all_smiles.add(smiles)
80
+
81
+ # Count spectra
82
+ if 'h_shift' in record and record['h_shift'] is not None and len(record['h_shift']) > 0:
83
+ stats['h_spectra'] += 1
84
+ if 'c_shift' in record and record['c_shift'] is not None and len(record['c_shift']) > 0:
85
+ stats['c_spectra'] += 1
86
+
87
+ # Get scaffold
88
+ scaffold = get_scaffold(smiles)
89
+ if scaffold:
90
+ scaffold_counter[scaffold] += 1
91
+
92
+ # Functional groups
93
+ if 'fg_onehot' in record:
94
+ stats['functional_groups'] += record['fg_onehot']
95
+
96
+ # Element counts
97
+ elem_counts = get_element_counts(smiles)
98
+ for elem, count in elem_counts.items():
99
+ stats['elements'][elem] += count
100
+
101
+ stats['unique_scaffolds'] = len(scaffold_counter)
102
+ stats['top_scaffolds'] = scaffold_counter.most_common(10)
103
+
104
+ print(f"Total records: {stats['total_records']:,}")
105
+ print(f"Unique SMILES: {stats['unique_smiles']:,}")
106
+ print(f"Unique scaffolds: {stats['unique_scaffolds']:,}")
107
+ print(f"¹H NMR spectra: {stats['h_spectra']:,}")
108
+ print(f"¹³C NMR spectra: {stats['c_spectra']:,}")
109
+ print(f"\nTop 5 elements:")
110
+ for elem, count in stats['elements'].most_common(5):
111
+ print(f" {elem}: {count:,}")
112
+
113
+ return stats
114
+
115
+ def plot_functional_groups(train_stats, val_stats, test_stats, output_path):
116
+ """Plot functional group distribution"""
117
+ fig, ax = plt.subplots(figsize=(14, 6))
118
+
119
+ x = np.arange(len(FG_NAMES))
120
+ width = 0.25
121
+
122
+ train_fg = train_stats['functional_groups']
123
+ val_fg = val_stats['functional_groups']
124
+ test_fg = test_stats['functional_groups']
125
+
126
+ ax.bar(x - width, train_fg, width, label='Train', alpha=0.8)
127
+ ax.bar(x, val_fg, width, label='Val', alpha=0.8)
128
+ ax.bar(x + width, test_fg, width, label='Test', alpha=0.8)
129
+
130
+ ax.set_xlabel('Functional Group')
131
+ ax.set_ylabel('Count')
132
+ ax.set_title('Functional Group Distribution Across Datasets')
133
+ ax.set_xticks(x)
134
+ ax.set_xticklabels(FG_NAMES, rotation=45, ha='right')
135
+ ax.legend()
136
+ ax.grid(axis='y', alpha=0.3)
137
+
138
+ plt.tight_layout()
139
+ plt.savefig(output_path, dpi=300, bbox_inches='tight')
140
+ plt.close()
141
+ print(f"Saved: {output_path}")
142
+
143
+ def plot_element_distribution(train_stats, val_stats, test_stats, output_path):
144
+ """Plot element distribution for common elements"""
145
+ # Focus on common organic elements
146
+ common_elements = ['C', 'H', 'O', 'N', 'F', 'Cl', 'Br', 'S', 'P', 'I']
147
+
148
+ fig, ax = plt.subplots(figsize=(12, 6))
149
+
150
+ # Get counts for each element
151
+ train_counts = [train_stats['elements'].get(e, 0) for e in common_elements]
152
+ val_counts = [val_stats['elements'].get(e, 0) for e in common_elements]
153
+ test_counts = [test_stats['elements'].get(e, 0) for e in common_elements]
154
+
155
+ x = np.arange(len(common_elements))
156
+ width = 0.25
157
+
158
+ ax.bar(x - width, train_counts, width, label='Train', alpha=0.8)
159
+ ax.bar(x, val_counts, width, label='Val', alpha=0.8)
160
+ ax.bar(x + width, test_counts, width, label='Test', alpha=0.8)
161
+
162
+ ax.set_xlabel('Element')
163
+ ax.set_ylabel('Total Count')
164
+ ax.set_title('Element Distribution Across Datasets')
165
+ ax.set_xticks(x)
166
+ ax.set_xticklabels(common_elements)
167
+ ax.legend()
168
+ ax.grid(axis='y', alpha=0.3)
169
+ ax.set_yscale('log')
170
+
171
+ plt.tight_layout()
172
+ plt.savefig(output_path, dpi=300, bbox_inches='tight')
173
+ plt.close()
174
+ print(f"Saved: {output_path}")
175
+
176
+ def plot_dataset_overview(train_stats, val_stats, test_stats, output_path):
177
+ """Plot overview of dataset statistics"""
178
+ fig, axes = plt.subplots(2, 2, figsize=(14, 10))
179
+
180
+ # 1. Total records and unique SMILES
181
+ ax = axes[0, 0]
182
+ datasets = ['Train', 'Val', 'Test']
183
+ total_records = [train_stats['total_records'], val_stats['total_records'], test_stats['total_records']]
184
+ unique_smiles = [train_stats['unique_smiles'], val_stats['unique_smiles'], test_stats['unique_smiles']]
185
+
186
+ x = np.arange(len(datasets))
187
+ width = 0.35
188
+
189
+ ax.bar(x - width/2, total_records, width, label='Total Records', alpha=0.8)
190
+ ax.bar(x + width/2, unique_smiles, width, label='Unique SMILES', alpha=0.8)
191
+ ax.set_ylabel('Count')
192
+ ax.set_title('Dataset Size Comparison')
193
+ ax.set_xticks(x)
194
+ ax.set_xticklabels(datasets)
195
+ ax.legend()
196
+ ax.grid(axis='y', alpha=0.3)
197
+
198
+ # Add value labels on bars
199
+ for i, (tr, us) in enumerate(zip(total_records, unique_smiles)):
200
+ ax.text(i - width/2, tr, f'{tr:,}', ha='center', va='bottom', fontsize=8)
201
+ ax.text(i + width/2, us, f'{us:,}', ha='center', va='bottom', fontsize=8)
202
+
203
+ # 2. Unique scaffolds
204
+ ax = axes[0, 1]
205
+ unique_scaffolds = [train_stats['unique_scaffolds'], val_stats['unique_scaffolds'], test_stats['unique_scaffolds']]
206
+
207
+ ax.bar(datasets, unique_scaffolds, alpha=0.8, color='coral')
208
+ ax.set_ylabel('Count')
209
+ ax.set_title('Unique Scaffolds')
210
+ ax.grid(axis='y', alpha=0.3)
211
+
212
+ for i, count in enumerate(unique_scaffolds):
213
+ ax.text(i, count, f'{count:,}', ha='center', va='bottom', fontsize=9)
214
+
215
+ # 3. NMR spectra types
216
+ ax = axes[1, 0]
217
+ h_spectra = [train_stats['h_spectra'], val_stats['h_spectra'], test_stats['h_spectra']]
218
+ c_spectra = [train_stats['c_spectra'], val_stats['c_spectra'], test_stats['c_spectra']]
219
+
220
+ x = np.arange(len(datasets))
221
+ width = 0.35
222
+
223
+ ax.bar(x - width/2, h_spectra, width, label='¹H NMR', alpha=0.8)
224
+ ax.bar(x + width/2, c_spectra, width, label='¹³C NMR', alpha=0.8)
225
+ ax.set_ylabel('Count')
226
+ ax.set_title('NMR Spectra Types')
227
+ ax.set_xticks(x)
228
+ ax.set_xticklabels(datasets)
229
+ ax.legend()
230
+ ax.grid(axis='y', alpha=0.3)
231
+
232
+ # 4. Top 5 elements (train set)
233
+ ax = axes[1, 1]
234
+ top_elements = train_stats['elements'].most_common(5)
235
+ elements = [e[0] for e in top_elements]
236
+ counts = [e[1] for e in top_elements]
237
+
238
+ ax.bar(elements, counts, alpha=0.8, color='skyblue')
239
+ ax.set_ylabel('Total Count')
240
+ ax.set_title('Top 5 Elements (Train Set)')
241
+ ax.grid(axis='y', alpha=0.3)
242
+ ax.set_yscale('log')
243
+
244
+ plt.tight_layout()
245
+ plt.savefig(output_path, dpi=300, bbox_inches='tight')
246
+ plt.close()
247
+ print(f"Saved: {output_path}")
248
+
249
+ def plot_scaffold_diversity(train_stats, val_stats, test_stats, output_path):
250
+ """Plot scaffold diversity comparison"""
251
+ fig, ax = plt.subplots(figsize=(10, 6))
252
+
253
+ datasets = ['Train', 'Val', 'Test']
254
+ total_records = [train_stats['total_records'], val_stats['total_records'], test_stats['total_records']]
255
+ unique_scaffolds = [train_stats['unique_scaffolds'], val_stats['unique_scaffolds'], test_stats['unique_scaffolds']]
256
+
257
+ # Calculate scaffold diversity ratio
258
+ diversity_ratio = [s/r for s, r in zip(unique_scaffolds, total_records)]
259
+
260
+ x = np.arange(len(datasets))
261
+ width = 0.6
262
+
263
+ bars = ax.bar(x, diversity_ratio, width, alpha=0.8, color=['#1f77b4', '#ff7f0e', '#2ca02c'])
264
+ ax.set_ylabel('Scaffold Diversity Ratio')
265
+ ax.set_title('Scaffold Diversity (Unique Scaffolds / Total Records)')
266
+ ax.set_xticks(x)
267
+ ax.set_xticklabels(datasets)
268
+ ax.grid(axis='y', alpha=0.3)
269
+ ax.set_ylim(0, 1)
270
+
271
+ # Add value labels
272
+ for i, (bar, ratio) in enumerate(zip(bars, diversity_ratio)):
273
+ height = bar.get_height()
274
+ ax.text(bar.get_x() + bar.get_width()/2., height,
275
+ f'{ratio:.3f}\n({unique_scaffolds[i]:,}/{total_records[i]:,})',
276
+ ha='center', va='bottom', fontsize=9)
277
+
278
+ plt.tight_layout()
279
+ plt.savefig(output_path, dpi=300, bbox_inches='tight')
280
+ plt.close()
281
+ print(f"Saved: {output_path}")
282
+
283
+ def main():
284
+ # File paths
285
+ train_path = "/gemini/code/NMRGym/NMRGym_train_balanced.pkl"
286
+ val_path = "/gemini/code/NMRGym/NMRGym_val_balanced.pkl"
287
+ test_path = "/gemini/code/NMRGym/NMRGym_test_balanced.pkl"
288
+
289
+ # Load datasets
290
+ print("Loading datasets...")
291
+ train_data = load_dataset(train_path)
292
+ val_data = load_dataset(val_path)
293
+ test_data = load_dataset(test_path)
294
+
295
+ # Analyze each dataset
296
+ train_stats = analyze_dataset(train_data, "Train (Balanced)")
297
+ val_stats = analyze_dataset(val_data, "Val (Balanced)")
298
+ test_stats = analyze_dataset(test_data, "Test (Balanced)")
299
+
300
+ # Generate visualizations
301
+ print("\n" + "="*60)
302
+ print("Generating visualizations...")
303
+ print("="*60)
304
+
305
+ plot_dataset_overview(train_stats, val_stats, test_stats,
306
+ "/gemini/code/NMRGym/dataset_overview.png")
307
+
308
+ plot_functional_groups(train_stats, val_stats, test_stats,
309
+ "/gemini/code/NMRGym/functional_groups.png")
310
+
311
+ plot_element_distribution(train_stats, val_stats, test_stats,
312
+ "/gemini/code/NMRGym/element_distribution.png")
313
+
314
+ plot_scaffold_diversity(train_stats, val_stats, test_stats,
315
+ "/gemini/code/NMRGym/scaffold_diversity.png")
316
+
317
+ # Save statistics as JSON
318
+ summary = {
319
+ 'train': {
320
+ 'total_records': train_stats['total_records'],
321
+ 'unique_smiles': train_stats['unique_smiles'],
322
+ 'unique_scaffolds': train_stats['unique_scaffolds'],
323
+ 'h_spectra': train_stats['h_spectra'],
324
+ 'c_spectra': train_stats['c_spectra'],
325
+ },
326
+ 'val': {
327
+ 'total_records': val_stats['total_records'],
328
+ 'unique_smiles': val_stats['unique_smiles'],
329
+ 'unique_scaffolds': val_stats['unique_scaffolds'],
330
+ 'h_spectra': val_stats['h_spectra'],
331
+ 'c_spectra': val_stats['c_spectra'],
332
+ },
333
+ 'test': {
334
+ 'total_records': test_stats['total_records'],
335
+ 'unique_smiles': test_stats['unique_smiles'],
336
+ 'unique_scaffolds': test_stats['unique_scaffolds'],
337
+ 'h_spectra': test_stats['h_spectra'],
338
+ 'c_spectra': test_stats['c_spectra'],
339
+ }
340
+ }
341
+
342
+ with open('/gemini/code/NMRGym/dataset_stats.json', 'w') as f:
343
+ json.dump(summary, f, indent=2)
344
+ print("\nSaved: /gemini/code/NMRGym/dataset_stats.json")
345
+
346
+ # Print final summary table
347
+ print("\n" + "="*60)
348
+ print("FINAL SUMMARY")
349
+ print("="*60)
350
+ print(f"{'Dataset':<15} {'Records':>10} {'Unique SMILES':>15} {'Scaffolds':>12} {'¹H NMR':>10} {'¹³C NMR':>10}")
351
+ print("-" * 85)
352
+ for name, stats in [('Train', train_stats), ('Val', val_stats), ('Test', test_stats)]:
353
+ print(f"{name:<15} {stats['total_records']:>10,} {stats['unique_smiles']:>15,} {stats['unique_scaffolds']:>12,} "
354
+ f"{stats['h_spectra']:>10,} {stats['c_spectra']:>10,}")
355
+
356
+ total_records = train_stats['total_records'] + val_stats['total_records'] + test_stats['total_records']
357
+ total_unique = train_stats['unique_smiles'] + val_stats['unique_smiles'] + test_stats['unique_smiles']
358
+ total_scaffolds = train_stats['unique_scaffolds'] + val_stats['unique_scaffolds'] + test_stats['unique_scaffolds']
359
+ total_h = train_stats['h_spectra'] + val_stats['h_spectra'] + test_stats['h_spectra']
360
+ total_c = train_stats['c_spectra'] + val_stats['c_spectra'] + test_stats['c_spectra']
361
+
362
+ print("-" * 85)
363
+ print(f"{'Total':<15} {total_records:>10,} {total_unique:>15,} {total_scaffolds:>12,} "
364
+ f"{total_h:>10,} {total_c:>10,}")
365
+ print("="*60 + "\n")
366
+
367
+ if __name__ == "__main__":
368
+ main()
dataset_overview.png ADDED

Git LFS Details

  • SHA256: dc77e16f5e82dee30a7aedc418ac20339dd7c6e5a1e2e203b70f50e02d864042
  • Pointer size: 131 Bytes
  • Size of remote file: 252 kB
dataset_stats.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": {
3
+ "total_records": 402676,
4
+ "unique_smiles": 250822,
5
+ "h_spectra": 402676,
6
+ "c_spectra": 402676
7
+ },
8
+ "val": {
9
+ "total_records": 53672,
10
+ "unique_smiles": 50716,
11
+ "h_spectra": 53672,
12
+ "c_spectra": 53672
13
+ },
14
+ "test": {
15
+ "total_records": 80069,
16
+ "unique_smiles": 74568,
17
+ "h_spectra": 80069,
18
+ "c_spectra": 80069
19
+ }
20
+ }
element_distribution.png ADDED

Git LFS Details

  • SHA256: 91319a924b8c61fc9e221d1ddec9a7430b197cb3af5b08f0b8594e4b277a8bd7
  • Pointer size: 130 Bytes
  • Size of remote file: 80.1 kB
functional_groups.png ADDED

Git LFS Details

  • SHA256: 7d26b2e177fedb0d3e4aed2134814d24bd709e0ce2af94271eb2b6c0412d09e2
  • Pointer size: 131 Bytes
  • Size of remote file: 228 kB
quick_analyze.py ADDED
@@ -0,0 +1,313 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ """
3
+ Quick analysis of NMRGym balanced datasets without expensive scaffold computation
4
+ """
5
+ import pickle
6
+ import numpy as np
7
+ import matplotlib.pyplot as plt
8
+ import seaborn as sns
9
+ from collections import Counter
10
+ from rdkit import Chem
11
+ import json
12
+
13
+ # Set style
14
+ sns.set_style("whitegrid")
15
+ plt.rcParams['font.size'] = 10
16
+ plt.rcParams['figure.dpi'] = 300
17
+
18
+ # Functional group names (index 0-21)
19
+ FG_NAMES = [
20
+ "Alcohol", "Carboxylic Acid", "Ester", "Ether", "Aldehyde", "Ketone",
21
+ "Alkene", "Alkyne", "Benzene", "Primary Amine", "Secondary Amine",
22
+ "Tertiary Amine", "Amide", "Cyano", "Fluorine", "Chlorine",
23
+ "Bromine", "Iodine", "Sulfonamide", "Sulfone", "Sulfide", "Phosphoric Acid"
24
+ ]
25
+
26
+ def load_dataset(pkl_path):
27
+ """Load a pickle file"""
28
+ print(f"Loading {pkl_path}...")
29
+ with open(pkl_path, "rb") as f:
30
+ return pickle.load(f)
31
+
32
+ def get_element_counts(smiles):
33
+ """Get element counts from SMILES"""
34
+ try:
35
+ mol = Chem.MolFromSmiles(smiles)
36
+ if mol is None:
37
+ return {}
38
+ element_counts = {}
39
+ for atom in mol.GetAtoms():
40
+ symbol = atom.GetSymbol()
41
+ element_counts[symbol] = element_counts.get(symbol, 0) + 1
42
+ return element_counts
43
+ except:
44
+ return {}
45
+
46
+ def analyze_dataset(dataset, name):
47
+ """Analyze a single dataset (quick version without scaffold)"""
48
+ print(f"\n{'='*60}")
49
+ print(f"Analyzing {name}")
50
+ print(f"{'='*60}")
51
+
52
+ stats = {
53
+ 'name': name,
54
+ 'total_records': len(dataset),
55
+ 'unique_smiles': 0,
56
+ 'functional_groups': np.zeros(22),
57
+ 'elements': Counter(),
58
+ 'h_spectra': 0,
59
+ 'c_spectra': 0,
60
+ }
61
+
62
+ unique_smiles = set()
63
+
64
+ for i, record in enumerate(dataset):
65
+ if (i + 1) % 1000 == 0:
66
+ print(f" Processed {i+1}/{len(dataset)} records...")
67
+
68
+ smiles = record['smiles']
69
+ unique_smiles.add(smiles)
70
+
71
+ # Count spectra
72
+ if 'h_shift' in record and record['h_shift'] is not None and len(record['h_shift']) > 0:
73
+ stats['h_spectra'] += 1
74
+ if 'c_shift' in record and record['c_shift'] is not None and len(record['c_shift']) > 0:
75
+ stats['c_spectra'] += 1
76
+
77
+ # Functional groups
78
+ if 'fg_onehot' in record:
79
+ stats['functional_groups'] += record['fg_onehot']
80
+
81
+ # Element counts
82
+ elem_counts = get_element_counts(smiles)
83
+ for elem, count in elem_counts.items():
84
+ stats['elements'][elem] += count
85
+
86
+ stats['unique_smiles'] = len(unique_smiles)
87
+
88
+ print(f"Total records: {stats['total_records']:,}")
89
+ print(f"Unique SMILES: {stats['unique_smiles']:,}")
90
+ print(f"¹H NMR spectra: {stats['h_spectra']:,}")
91
+ print(f"¹³C NMR spectra: {stats['c_spectra']:,}")
92
+ print(f"\nTop 5 elements:")
93
+ for elem, count in stats['elements'].most_common(5):
94
+ print(f" {elem}: {count:,}")
95
+
96
+ return stats
97
+
98
+ def plot_functional_groups(train_stats, val_stats, test_stats, output_path):
99
+ """Plot functional group distribution"""
100
+ fig, ax = plt.subplots(figsize=(14, 6))
101
+
102
+ x = np.arange(len(FG_NAMES))
103
+ width = 0.25
104
+
105
+ train_fg = train_stats['functional_groups']
106
+ val_fg = val_stats['functional_groups']
107
+ test_fg = test_stats['functional_groups']
108
+
109
+ ax.bar(x - width, train_fg, width, label='Train', alpha=0.8)
110
+ ax.bar(x, val_fg, width, label='Val', alpha=0.8)
111
+ ax.bar(x + width, test_fg, width, label='Test', alpha=0.8)
112
+
113
+ ax.set_xlabel('Functional Group')
114
+ ax.set_ylabel('Count')
115
+ ax.set_title('Functional Group Distribution Across Datasets')
116
+ ax.set_xticks(x)
117
+ ax.set_xticklabels(FG_NAMES, rotation=45, ha='right')
118
+ ax.legend()
119
+ ax.grid(axis='y', alpha=0.3)
120
+
121
+ plt.tight_layout()
122
+ plt.savefig(output_path, dpi=300, bbox_inches='tight')
123
+ plt.close()
124
+ print(f"\nSaved: {output_path}")
125
+
126
+ def plot_element_distribution(train_stats, val_stats, test_stats, output_path):
127
+ """Plot element distribution for common elements"""
128
+ # Focus on common organic elements
129
+ common_elements = ['C', 'H', 'O', 'N', 'F', 'Cl', 'Br', 'S', 'P', 'I']
130
+
131
+ fig, ax = plt.subplots(figsize=(12, 6))
132
+
133
+ # Get counts for each element
134
+ train_counts = [train_stats['elements'].get(e, 0) for e in common_elements]
135
+ val_counts = [val_stats['elements'].get(e, 0) for e in common_elements]
136
+ test_counts = [test_stats['elements'].get(e, 0) for e in common_elements]
137
+
138
+ x = np.arange(len(common_elements))
139
+ width = 0.25
140
+
141
+ ax.bar(x - width, train_counts, width, label='Train', alpha=0.8)
142
+ ax.bar(x, val_counts, width, label='Val', alpha=0.8)
143
+ ax.bar(x + width, test_counts, width, label='Test', alpha=0.8)
144
+
145
+ ax.set_xlabel('Element')
146
+ ax.set_ylabel('Total Count')
147
+ ax.set_title('Element Distribution Across Datasets')
148
+ ax.set_xticks(x)
149
+ ax.set_xticklabels(common_elements)
150
+ ax.legend()
151
+ ax.grid(axis='y', alpha=0.3)
152
+ ax.set_yscale('log')
153
+
154
+ plt.tight_layout()
155
+ plt.savefig(output_path, dpi=300, bbox_inches='tight')
156
+ plt.close()
157
+ print(f"Saved: {output_path}")
158
+
159
+ def plot_dataset_overview(train_stats, val_stats, test_stats, output_path):
160
+ """Plot overview of dataset statistics"""
161
+ fig, axes = plt.subplots(2, 2, figsize=(14, 10))
162
+
163
+ # 1. Total records and unique SMILES
164
+ ax = axes[0, 0]
165
+ datasets = ['Train', 'Val', 'Test']
166
+ total_records = [train_stats['total_records'], val_stats['total_records'], test_stats['total_records']]
167
+ unique_smiles = [train_stats['unique_smiles'], val_stats['unique_smiles'], test_stats['unique_smiles']]
168
+
169
+ x = np.arange(len(datasets))
170
+ width = 0.35
171
+
172
+ ax.bar(x - width/2, total_records, width, label='Total Records', alpha=0.8)
173
+ ax.bar(x + width/2, unique_smiles, width, label='Unique SMILES', alpha=0.8)
174
+ ax.set_ylabel('Count')
175
+ ax.set_title('Dataset Size Comparison')
176
+ ax.set_xticks(x)
177
+ ax.set_xticklabels(datasets)
178
+ ax.legend()
179
+ ax.grid(axis='y', alpha=0.3)
180
+
181
+ # Add value labels on bars
182
+ for i, (tr, us) in enumerate(zip(total_records, unique_smiles)):
183
+ ax.text(i - width/2, tr, f'{tr:,}', ha='center', va='bottom', fontsize=8)
184
+ ax.text(i + width/2, us, f'{us:,}', ha='center', va='bottom', fontsize=8)
185
+
186
+ # 2. Data duplicates (Total vs Unique SMILES)
187
+ ax = axes[0, 1]
188
+ duplication_ratio = [1 - (u/t) if t > 0 else 0 for u, t in zip(unique_smiles, total_records)]
189
+
190
+ bars = ax.bar(datasets, duplication_ratio, alpha=0.8, color='coral')
191
+ ax.set_ylabel('Duplication Ratio')
192
+ ax.set_title('Data Duplication (1 - Unique/Total)')
193
+ ax.grid(axis='y', alpha=0.3)
194
+ ax.set_ylim(0, max(duplication_ratio) * 1.2 if max(duplication_ratio) > 0 else 1)
195
+
196
+ for i, (bar, ratio) in enumerate(zip(bars, duplication_ratio)):
197
+ height = bar.get_height()
198
+ ax.text(bar.get_x() + bar.get_width()/2., height,
199
+ f'{ratio:.2%}',
200
+ ha='center', va='bottom', fontsize=9)
201
+
202
+ # 3. NMR spectra types
203
+ ax = axes[1, 0]
204
+ h_spectra = [train_stats['h_spectra'], val_stats['h_spectra'], test_stats['h_spectra']]
205
+ c_spectra = [train_stats['c_spectra'], val_stats['c_spectra'], test_stats['c_spectra']]
206
+
207
+ x = np.arange(len(datasets))
208
+ width = 0.35
209
+
210
+ ax.bar(x - width/2, h_spectra, width, label='¹H NMR', alpha=0.8)
211
+ ax.bar(x + width/2, c_spectra, width, label='¹³C NMR', alpha=0.8)
212
+ ax.set_ylabel('Count')
213
+ ax.set_title('NMR Spectra Types')
214
+ ax.set_xticks(x)
215
+ ax.set_xticklabels(datasets)
216
+ ax.legend()
217
+ ax.grid(axis='y', alpha=0.3)
218
+
219
+ # 4. Top 5 elements (train set)
220
+ ax = axes[1, 1]
221
+ top_elements = train_stats['elements'].most_common(5)
222
+ elements = [e[0] for e in top_elements]
223
+ counts = [e[1] for e in top_elements]
224
+
225
+ ax.bar(elements, counts, alpha=0.8, color='skyblue')
226
+ ax.set_ylabel('Total Count')
227
+ ax.set_title('Top 5 Elements (Train Set)')
228
+ ax.grid(axis='y', alpha=0.3)
229
+ ax.set_yscale('log')
230
+
231
+ plt.tight_layout()
232
+ plt.savefig(output_path, dpi=300, bbox_inches='tight')
233
+ plt.close()
234
+ print(f"Saved: {output_path}")
235
+
236
+ def main():
237
+ # File paths
238
+ train_path = "/gemini/code/NMRGym/NMRGym_train_balanced.pkl"
239
+ val_path = "/gemini/code/NMRGym/NMRGym_val_balanced.pkl"
240
+ test_path = "/gemini/code/NMRGym/NMRGym_test_balanced.pkl"
241
+
242
+ # Load datasets
243
+ train_data = load_dataset(train_path)
244
+ val_data = load_dataset(val_path)
245
+ test_data = load_dataset(test_path)
246
+
247
+ # Analyze each dataset
248
+ train_stats = analyze_dataset(train_data, "Train (Balanced)")
249
+ val_stats = analyze_dataset(val_data, "Val (Balanced)")
250
+ test_stats = analyze_dataset(test_data, "Test (Balanced)")
251
+
252
+ # Generate visualizations
253
+ print("\n" + "="*60)
254
+ print("Generating visualizations...")
255
+ print("="*60)
256
+
257
+ plot_dataset_overview(train_stats, val_stats, test_stats,
258
+ "/gemini/code/NMRGym/dataset_overview.png")
259
+
260
+ plot_functional_groups(train_stats, val_stats, test_stats,
261
+ "/gemini/code/NMRGym/functional_groups.png")
262
+
263
+ plot_element_distribution(train_stats, val_stats, test_stats,
264
+ "/gemini/code/NMRGym/element_distribution.png")
265
+
266
+ # Save statistics as JSON
267
+ summary = {
268
+ 'train': {
269
+ 'total_records': train_stats['total_records'],
270
+ 'unique_smiles': train_stats['unique_smiles'],
271
+ 'h_spectra': train_stats['h_spectra'],
272
+ 'c_spectra': train_stats['c_spectra'],
273
+ },
274
+ 'val': {
275
+ 'total_records': val_stats['total_records'],
276
+ 'unique_smiles': val_stats['unique_smiles'],
277
+ 'h_spectra': val_stats['h_spectra'],
278
+ 'c_spectra': val_stats['c_spectra'],
279
+ },
280
+ 'test': {
281
+ 'total_records': test_stats['total_records'],
282
+ 'unique_smiles': test_stats['unique_smiles'],
283
+ 'h_spectra': test_stats['h_spectra'],
284
+ 'c_spectra': test_stats['c_spectra'],
285
+ }
286
+ }
287
+
288
+ with open('/gemini/code/NMRGym/dataset_stats.json', 'w') as f:
289
+ json.dump(summary, f, indent=2)
290
+ print("\nSaved: /gemini/code/NMRGym/dataset_stats.json")
291
+
292
+ # Print final summary table
293
+ print("\n" + "="*60)
294
+ print("FINAL SUMMARY")
295
+ print("="*60)
296
+ print(f"{'Dataset':<15} {'Records':>10} {'Unique SMILES':>15} {'¹H NMR':>10} {'¹³C NMR':>10}")
297
+ print("-" * 70)
298
+ for name, stats in [('Train', train_stats), ('Val', val_stats), ('Test', test_stats)]:
299
+ print(f"{name:<15} {stats['total_records']:>10,} {stats['unique_smiles']:>15,} "
300
+ f"{stats['h_spectra']:>10,} {stats['c_spectra']:>10,}")
301
+
302
+ total_records = train_stats['total_records'] + val_stats['total_records'] + test_stats['total_records']
303
+ total_unique = train_stats['unique_smiles'] + val_stats['unique_smiles'] + test_stats['unique_smiles']
304
+ total_h = train_stats['h_spectra'] + val_stats['h_spectra'] + test_stats['h_spectra']
305
+ total_c = train_stats['c_spectra'] + val_stats['c_spectra'] + test_stats['c_spectra']
306
+
307
+ print("-" * 70)
308
+ print(f"{'Total':<15} {total_records:>10,} {total_unique:>15,} "
309
+ f"{total_h:>10,} {total_c:>10,}")
310
+ print("="*60 + "\n")
311
+
312
+ if __name__ == "__main__":
313
+ main()