#!/usr/bin/env python3 """ Analyze NMRGym balanced datasets and generate visualizations """ import pickle import numpy as np import matplotlib.pyplot as plt import seaborn as sns from collections import Counter from rdkit import Chem from rdkit.Chem.Scaffolds import MurckoScaffold import json # Set style sns.set_style("whitegrid") plt.rcParams['font.size'] = 10 plt.rcParams['figure.dpi'] = 300 # Functional group names (index 0-21) FG_NAMES = [ "Alcohol", "Carboxylic Acid", "Ester", "Ether", "Aldehyde", "Ketone", "Alkene", "Alkyne", "Benzene", "Primary Amine", "Secondary Amine", "Tertiary Amine", "Amide", "Cyano", "Fluorine", "Chlorine", "Bromine", "Iodine", "Sulfonamide", "Sulfone", "Sulfide", "Phosphoric Acid" ] def load_dataset(pkl_path): """Load a pickle file""" with open(pkl_path, "rb") as f: return pickle.load(f) def get_scaffold(smiles): """Get Bemis-Murcko scaffold""" try: mol = Chem.MolFromSmiles(smiles) if mol is None: return None scaffold = MurckoScaffold.GetScaffoldForMol(mol) return Chem.MolToSmiles(scaffold) except: return None def get_element_counts(smiles): """Get element counts from SMILES""" try: mol = Chem.MolFromSmiles(smiles) if mol is None: return {} element_counts = {} for atom in mol.GetAtoms(): symbol = atom.GetSymbol() element_counts[symbol] = element_counts.get(symbol, 0) + 1 return element_counts except: return {} def analyze_dataset(dataset, name): """Analyze a single dataset""" print(f"\n{'='*60}") print(f"Analyzing {name}") print(f"{'='*60}") stats = { 'name': name, 'total_records': len(dataset), 'unique_smiles': len(set(d['smiles'] for d in dataset)), 'scaffolds': [], 'functional_groups': np.zeros(22), 'elements': Counter(), 'h_spectra': 0, 'c_spectra': 0, } all_smiles = set() scaffold_counter = Counter() for record in dataset: smiles = record['smiles'] all_smiles.add(smiles) # Count spectra if 'h_shift' in record and record['h_shift'] is not None and len(record['h_shift']) > 0: stats['h_spectra'] += 1 if 'c_shift' in record and record['c_shift'] is not None and len(record['c_shift']) > 0: stats['c_spectra'] += 1 # Get scaffold scaffold = get_scaffold(smiles) if scaffold: scaffold_counter[scaffold] += 1 # Functional groups if 'fg_onehot' in record: stats['functional_groups'] += record['fg_onehot'] # Element counts elem_counts = get_element_counts(smiles) for elem, count in elem_counts.items(): stats['elements'][elem] += count stats['unique_scaffolds'] = len(scaffold_counter) stats['top_scaffolds'] = scaffold_counter.most_common(10) print(f"Total records: {stats['total_records']:,}") print(f"Unique SMILES: {stats['unique_smiles']:,}") print(f"Unique scaffolds: {stats['unique_scaffolds']:,}") print(f"¹H NMR spectra: {stats['h_spectra']:,}") print(f"¹³C NMR spectra: {stats['c_spectra']:,}") print(f"\nTop 5 elements:") for elem, count in stats['elements'].most_common(5): print(f" {elem}: {count:,}") return stats def plot_functional_groups(train_stats, val_stats, test_stats, output_path): """Plot functional group distribution""" fig, ax = plt.subplots(figsize=(14, 6)) x = np.arange(len(FG_NAMES)) width = 0.25 train_fg = train_stats['functional_groups'] val_fg = val_stats['functional_groups'] test_fg = test_stats['functional_groups'] ax.bar(x - width, train_fg, width, label='Train', alpha=0.8) ax.bar(x, val_fg, width, label='Val', alpha=0.8) ax.bar(x + width, test_fg, width, label='Test', alpha=0.8) ax.set_xlabel('Functional Group') ax.set_ylabel('Count') ax.set_title('Functional Group Distribution Across Datasets') ax.set_xticks(x) ax.set_xticklabels(FG_NAMES, rotation=45, ha='right') ax.legend() ax.grid(axis='y', alpha=0.3) plt.tight_layout() plt.savefig(output_path, dpi=300, bbox_inches='tight') plt.close() print(f"Saved: {output_path}") def plot_element_distribution(train_stats, val_stats, test_stats, output_path): """Plot element distribution for common elements""" # Focus on common organic elements common_elements = ['C', 'H', 'O', 'N', 'F', 'Cl', 'Br', 'S', 'P', 'I'] fig, ax = plt.subplots(figsize=(12, 6)) # Get counts for each element train_counts = [train_stats['elements'].get(e, 0) for e in common_elements] val_counts = [val_stats['elements'].get(e, 0) for e in common_elements] test_counts = [test_stats['elements'].get(e, 0) for e in common_elements] x = np.arange(len(common_elements)) width = 0.25 ax.bar(x - width, train_counts, width, label='Train', alpha=0.8) ax.bar(x, val_counts, width, label='Val', alpha=0.8) ax.bar(x + width, test_counts, width, label='Test', alpha=0.8) ax.set_xlabel('Element') ax.set_ylabel('Total Count') ax.set_title('Element Distribution Across Datasets') ax.set_xticks(x) ax.set_xticklabels(common_elements) ax.legend() ax.grid(axis='y', alpha=0.3) ax.set_yscale('log') plt.tight_layout() plt.savefig(output_path, dpi=300, bbox_inches='tight') plt.close() print(f"Saved: {output_path}") def plot_dataset_overview(train_stats, val_stats, test_stats, output_path): """Plot overview of dataset statistics""" fig, axes = plt.subplots(2, 2, figsize=(14, 10)) # 1. Total records and unique SMILES ax = axes[0, 0] datasets = ['Train', 'Val', 'Test'] total_records = [train_stats['total_records'], val_stats['total_records'], test_stats['total_records']] unique_smiles = [train_stats['unique_smiles'], val_stats['unique_smiles'], test_stats['unique_smiles']] x = np.arange(len(datasets)) width = 0.35 ax.bar(x - width/2, total_records, width, label='Total Records', alpha=0.8) ax.bar(x + width/2, unique_smiles, width, label='Unique SMILES', alpha=0.8) ax.set_ylabel('Count') ax.set_title('Dataset Size Comparison') ax.set_xticks(x) ax.set_xticklabels(datasets) ax.legend() ax.grid(axis='y', alpha=0.3) # Add value labels on bars for i, (tr, us) in enumerate(zip(total_records, unique_smiles)): ax.text(i - width/2, tr, f'{tr:,}', ha='center', va='bottom', fontsize=8) ax.text(i + width/2, us, f'{us:,}', ha='center', va='bottom', fontsize=8) # 2. Unique scaffolds ax = axes[0, 1] unique_scaffolds = [train_stats['unique_scaffolds'], val_stats['unique_scaffolds'], test_stats['unique_scaffolds']] ax.bar(datasets, unique_scaffolds, alpha=0.8, color='coral') ax.set_ylabel('Count') ax.set_title('Unique Scaffolds') ax.grid(axis='y', alpha=0.3) for i, count in enumerate(unique_scaffolds): ax.text(i, count, f'{count:,}', ha='center', va='bottom', fontsize=9) # 3. NMR spectra types ax = axes[1, 0] h_spectra = [train_stats['h_spectra'], val_stats['h_spectra'], test_stats['h_spectra']] c_spectra = [train_stats['c_spectra'], val_stats['c_spectra'], test_stats['c_spectra']] x = np.arange(len(datasets)) width = 0.35 ax.bar(x - width/2, h_spectra, width, label='¹H NMR', alpha=0.8) ax.bar(x + width/2, c_spectra, width, label='¹³C NMR', alpha=0.8) ax.set_ylabel('Count') ax.set_title('NMR Spectra Types') ax.set_xticks(x) ax.set_xticklabels(datasets) ax.legend() ax.grid(axis='y', alpha=0.3) # 4. Top 5 elements (train set) ax = axes[1, 1] top_elements = train_stats['elements'].most_common(5) elements = [e[0] for e in top_elements] counts = [e[1] for e in top_elements] ax.bar(elements, counts, alpha=0.8, color='skyblue') ax.set_ylabel('Total Count') ax.set_title('Top 5 Elements (Train Set)') ax.grid(axis='y', alpha=0.3) ax.set_yscale('log') plt.tight_layout() plt.savefig(output_path, dpi=300, bbox_inches='tight') plt.close() print(f"Saved: {output_path}") def plot_scaffold_diversity(train_stats, val_stats, test_stats, output_path): """Plot scaffold diversity comparison""" fig, ax = plt.subplots(figsize=(10, 6)) datasets = ['Train', 'Val', 'Test'] total_records = [train_stats['total_records'], val_stats['total_records'], test_stats['total_records']] unique_scaffolds = [train_stats['unique_scaffolds'], val_stats['unique_scaffolds'], test_stats['unique_scaffolds']] # Calculate scaffold diversity ratio diversity_ratio = [s/r for s, r in zip(unique_scaffolds, total_records)] x = np.arange(len(datasets)) width = 0.6 bars = ax.bar(x, diversity_ratio, width, alpha=0.8, color=['#1f77b4', '#ff7f0e', '#2ca02c']) ax.set_ylabel('Scaffold Diversity Ratio') ax.set_title('Scaffold Diversity (Unique Scaffolds / Total Records)') ax.set_xticks(x) ax.set_xticklabels(datasets) ax.grid(axis='y', alpha=0.3) ax.set_ylim(0, 1) # Add value labels for i, (bar, ratio) in enumerate(zip(bars, diversity_ratio)): height = bar.get_height() ax.text(bar.get_x() + bar.get_width()/2., height, f'{ratio:.3f}\n({unique_scaffolds[i]:,}/{total_records[i]:,})', ha='center', va='bottom', fontsize=9) plt.tight_layout() plt.savefig(output_path, dpi=300, bbox_inches='tight') plt.close() print(f"Saved: {output_path}") def main(): # File paths train_path = "/gemini/code/NMRGym/NMRGym_train_balanced.pkl" val_path = "/gemini/code/NMRGym/NMRGym_val_balanced.pkl" test_path = "/gemini/code/NMRGym/NMRGym_test_balanced.pkl" # Load datasets print("Loading datasets...") train_data = load_dataset(train_path) val_data = load_dataset(val_path) test_data = load_dataset(test_path) # Analyze each dataset train_stats = analyze_dataset(train_data, "Train (Balanced)") val_stats = analyze_dataset(val_data, "Val (Balanced)") test_stats = analyze_dataset(test_data, "Test (Balanced)") # Generate visualizations print("\n" + "="*60) print("Generating visualizations...") print("="*60) plot_dataset_overview(train_stats, val_stats, test_stats, "/gemini/code/NMRGym/dataset_overview.png") plot_functional_groups(train_stats, val_stats, test_stats, "/gemini/code/NMRGym/functional_groups.png") plot_element_distribution(train_stats, val_stats, test_stats, "/gemini/code/NMRGym/element_distribution.png") plot_scaffold_diversity(train_stats, val_stats, test_stats, "/gemini/code/NMRGym/scaffold_diversity.png") # Save statistics as JSON summary = { 'train': { 'total_records': train_stats['total_records'], 'unique_smiles': train_stats['unique_smiles'], 'unique_scaffolds': train_stats['unique_scaffolds'], 'h_spectra': train_stats['h_spectra'], 'c_spectra': train_stats['c_spectra'], }, 'val': { 'total_records': val_stats['total_records'], 'unique_smiles': val_stats['unique_smiles'], 'unique_scaffolds': val_stats['unique_scaffolds'], 'h_spectra': val_stats['h_spectra'], 'c_spectra': val_stats['c_spectra'], }, 'test': { 'total_records': test_stats['total_records'], 'unique_smiles': test_stats['unique_smiles'], 'unique_scaffolds': test_stats['unique_scaffolds'], 'h_spectra': test_stats['h_spectra'], 'c_spectra': test_stats['c_spectra'], } } with open('/gemini/code/NMRGym/dataset_stats.json', 'w') as f: json.dump(summary, f, indent=2) print("\nSaved: /gemini/code/NMRGym/dataset_stats.json") # Print final summary table print("\n" + "="*60) print("FINAL SUMMARY") print("="*60) print(f"{'Dataset':<15} {'Records':>10} {'Unique SMILES':>15} {'Scaffolds':>12} {'¹H NMR':>10} {'¹³C NMR':>10}") print("-" * 85) for name, stats in [('Train', train_stats), ('Val', val_stats), ('Test', test_stats)]: print(f"{name:<15} {stats['total_records']:>10,} {stats['unique_smiles']:>15,} {stats['unique_scaffolds']:>12,} " f"{stats['h_spectra']:>10,} {stats['c_spectra']:>10,}") total_records = train_stats['total_records'] + val_stats['total_records'] + test_stats['total_records'] total_unique = train_stats['unique_smiles'] + val_stats['unique_smiles'] + test_stats['unique_smiles'] total_scaffolds = train_stats['unique_scaffolds'] + val_stats['unique_scaffolds'] + test_stats['unique_scaffolds'] total_h = train_stats['h_spectra'] + val_stats['h_spectra'] + test_stats['h_spectra'] total_c = train_stats['c_spectra'] + val_stats['c_spectra'] + test_stats['c_spectra'] print("-" * 85) print(f"{'Total':<15} {total_records:>10,} {total_unique:>15,} {total_scaffolds:>12,} " f"{total_h:>10,} {total_c:>10,}") print("="*60 + "\n") if __name__ == "__main__": main()