ylshen commited on
Commit
4df137d
·
verified ·
1 Parent(s): 20e2b5d

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +46 -0
README.md ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # FactNet FactSense Dataset
2
+
3
+ ## Overview
4
+
5
+ FactSense is the linguistic layer of FactNet that provides multilingual, natural language expressions of facts extracted from Wikipedia pages. Each FactSense instance represents a FactStatement realized in natural text with provenance information.
6
+
7
+ ## Dataset Format
8
+
9
+ The dataset contains parquet files with the following key fields:
10
+
11
+ - `factsense_id`: Unique identifier for the FactSense instance
12
+ - `belongs_to_statement_id`: ID of the associated FactStatement
13
+ - `language`: Language code (e.g., 'en', 'zh')
14
+ - `page_id`: Wikipedia page ID
15
+ - `page_title`: Title of the Wikipedia page
16
+ - `page_namespace`: Wikipedia namespace
17
+ - `match_type`: Type of match (sitelink, sitelink_pagelink, label_based, etc.)
18
+ - `sentence`: Text snippet containing the fact mention (limited to 1000 chars)
19
+ - `sentence_index`: Position of the sentence in the paragraph/page
20
+ - `confidence`: Match confidence score (0.5-0.9)
21
+ - `subject_qid`: Subject entity QID
22
+ - `property_pid`: Property PID
23
+ - `value_qid`: Value entity QID (if applicable)
24
+ - `subject_label`: Label used for matching
25
+ - `value_label`: Value label used for matching
26
+ - `extraction_method`: Extraction strategy version
27
+ - `extraction_ts`: Extraction timestamp
28
+
29
+ ## Usage
30
+
31
+ FactSense instances provide natural language evidence for facts across multiple languages, enabling applications in multilingual fact checking, knowledge-grounded generation, and cross-lingual information retrieval.
32
+
33
+ ## License
34
+
35
+ This dataset contains text derived from Wikipedia and is available under the CC BY-SA license.
36
+
37
+ ## Citation
38
+
39
+ ```
40
+ @article{shen2026factnet,
41
+ title={FactNet: A Billion-Scale Knowledge Graph for Multilingual Factual Grounding},
42
+ author={Shen, Yingli and Lai, Wen and Zhou, Jie and Zhang, Xueren and Wang, Yudong and Luo, Kangyang and Wang, Shuo and Gao, Ge and Fraser, Alexander and Sun, Maosong},
43
+ journal={arXiv preprint arXiv:2602.03417},
44
+ year={2026}
45
+ }
46
+ ```